
AD-A262 568

ow..

40 Reproduced From
Blest Available Copy

Toward
4-

Reusable G raphics Compnn Joit s in Ada

TIHEFS IS
Samn-kvu Limu

(Capt aini. IIOKAF'

AFIT/G('S/E.NG/f93N-03

OLWUIN AEIT DTI
VWU~b1;d=APRO0

' DEPARTMENT OF TEAIR.FORCE J
AIRA IDINkV Ty.

RJFRCEINSTITUTrO TECHNOLOGY

Wright-Patterson Air Force Bose,.Ohio

AFIT/GCS/ENG/93M-03

Toward

Reusable Graphics Components in Ada

THESIS
Sam-kyu Lim

Captain, ROKAF

AFIT/GCS/ENG/93M-03

93-.0689(0

Approved for public release; distribution unlimited

584 02 049

AFIT/GCS/ENG/93M-03

Toward

Reusable Graphics Components in Ada

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems £ooession loW

DTIC TV3
Vnannojnced 3
Jus•.t Iritc.ttion

Sam-kyu Lim, B.S.
ByCaptain, ROKAF Distributicn/,

Availability Code$
iAvail and/or

Dist| Special

March 1993 d0 ul Ited

b'z= QUALITY Oz~z 4.

Approved for public release; distribution unlimited

The purpose of this thesis was 1o investigate and to demonstrate Ada's applicability

as an implekmentation language for a reusable graphical soft ware component.

This thesis was accomplished through many people's encouragement and support. I

wouhll lik, to express my deep appreciation to those people who helped me during the last

21 months.

First of all, I would like to thank my thesis advisor, Lieutenant Colonel Patricia K.

Lawlis for her help and guidance during this thesis. This would not have been possible

without her help. I also want to thank my thesis committee members, Major David R.

Luginbuhl and Captain Dawn A. Guido. Their continuous guidance made it possible for me

to complete my thesis. Additional thanks goes to Dr. Hyong Lec. lie helped my thesis work

by checking grammar and solving miscellaneous problems.

My greatest thanks goes to my wife Woojung and son Jonghlyun. Thanks for sharing

all difficulties, giving their devoted support, and for enduring a long lonely time.

Sam-kyu Lirm

\ ._ --

Table of Contents

Page

Preface........

List of Figures vi

List of Tables. vii

Abstract. Vill

I. Introduction 1-1

1.1 Background. 1-1

1.2 Problem Statement 1-2

1.3 Hypothesis. 1-2

1.4 Research Objective 1-2

1.5 Scope 1-2

1.6 Assumptions 1-2

1.6.1 Hardware.- 2

1.6.2 Software. 1-3

1.7 Approach/ Methodology 1-3

1.8 Materials and Equipments. 1-3

1.9 Summary 1-4

1.10 Thesis Overview 1-4

II. Literature Review 2-1

2.1 Introduction.. 2-1

2.2 The Object-Oriented Paradigm. 2-1

2.2.1 The Need for Object-Oriented Techniques. 2-1

Page

2.2.2 Object-Oriented (00) Paradigm 2-2

2.2.3 Object-Oriented System Life Cycle 2-6

2.2.1 Benefits and Drawbacks of the Object-Oriented Approach 2-7

2.3 Reuse ... 2-8

2.3.1 Reuse in Design and Code Scavenging 2-10

2.3.2 Reuse in Source Code Components 2-10

2.3.3 Reuse in Software Schemas 2-11

2.3.4 Reuse in Software Architecture 2-11

2.3.5 Reusability in an Object-Oriented Approach 2-11

2.4 The Features of Ada2-13

2.4.1 The Object Oriented Capabilities of Ada 2-13

2.4.2 The Reusability of Ada 2-15

2.4.3 Foreign Language Interface 2-15

2.5 The Features of C++ 2-15

2.6 Ada/C++ Similarities and Contrasts 2-16

2.6.1 Features Where Ada has an Advantage 2-18

2.6.2 Features Where C++ has an Advantage 2-19

2.7 Ada Interfacing (Binding) with C++/C 2-19

2.7.1 Ada Interface 2-20

2.7.2 C Interface 2-21

2.7.3 C++ Interface 2-22

2.7.4 Ada Binding to C++/C Routines 2-22

2.7.5 Program Conversion 2-28

2.8 The MICROSTICK 2-29

2.9 Summary 2-29

iv

Page

III. Analysis/Design 3-1

3.1 Introduction 3-1

3.2 Analysis .. 3-1

3.3 Design 3-6

3.3.1 Alternative Methods for Design of a Reusable Component 3-9

3.3.2 Abstract State Machine (ASM) Approach 3-10

3.3.3 Task Approach 3-11

3.3.4 ADT Approach 3-12

3.3.5 Generic Approach 3-14

3.3.6 Using Ada 9X 3-15

3.3.7 Abstract Data Type w'th Common Class 3-18

IV. Detailed Design and Implementation 4-1

4.1 Introduction 4-1

4.2 Detailed Design and Implementation of the Reusable Port and

UnmanagedRS232_Port Component 4-1

4.2.1 Inheritance 4-3

4.2.2 Dynamic Binding 4-5

4.2.3 Clientship 4-10

4.3 Detailed Design and Implementation of Reusable a Joystick Com-

ponent ... 4-11

4.4 Detailed Design and Implementation of the Ada Wrapper 4-15

V. Summary and Conclusions 5-1

5.1 Summary 5-1

5.2 Conclusions 5-7

5.3 Recommendations 5-8

* Appendix A. Joystick and RS232Port Design A-i

V

-7

Page

Appendix B. Example Source Program List B-I

Bibliography BIB-i

Vita .. VITA-1

vi

List of Figures
Figure Page

3.1. Design of Joystick and RS232 Port Classes 3-3

3.2. Option 1: Design of Joystick and RS232 Port Classes 3-9

3.3. Option 2: Design of Joystick and RS232 Port Classes 3-10

3.4. Full Version of the Joystick and RS232 Port Class Hierarchy 3-20

4.1. List Structure Holding State of Port Objects 4-3

4.2. List Structure Holding State of UnmanagedcRS232_Port Objects 4-6

A.1. Flight Simulator Composition A-1

A.2. Joystick and RS232 Port Class Hierarchy A-2

A.3. CommonObject Class A-3

A.4. Joystick Class .. A-4

A.5. Port Class A-5

A.6. Unmanaged.RS232_Port Cla,.. A-6

A.7. Adawrapper ... A-7

/

vii

- - .--- ,4.. . , " . ." ,

List of Tables
Table Page

2.1. Ada and C++ Support for Key Language Features 2-18

2.2. Outputs of MICROSTICK 2-29

4.1. The C++ Type-safe Linkage and Name Encoding Techniques 4-16

VIii

AFIT/GCS/ENG/93M-03

Abstract

This thesis demonstrates and illustrates a way of developing reu3able graphics software

components in Ada associated with a C++/C library. The work was carried out using object-

oriented software development techniques that were used to analyze, design and implement a

partial flight simulator. The objective of this thesis was to present a way of building ieusable

software components with Ada in a graphics application environment.

An object-oriented approach was taken in the development of a set of reusable graphics

software components for a flight simulator domain. A selection of a set of reusable software

components came from domain analysis. These componentr were analyzed in detail, 'hen

redesigred to demonstrate and illistrate the thesis objective. Examples from design and

implementation demonstrate how Ada 83 was applied in building reusable graphics software

components associated with C++ routines, the limitations of Ada 83, and how Ada9X

addresses these limitations.

ix

Toward

Reusable Graphics Components in Ada

I. Introduction

1.1 Background

The problems with software today are typically associated with what some people call

the "software crisis". "Over the past ten years, the software crisis has cost the Department

of Defense alone tens of biflions of dollars" (42:2). As software development anl maintenance

costs have continued to rise at ever increasing rates, the use of standards as a solution to the

problem has bLer, suggested. Standardization is far more important in the drive toward reuse

than special mechanism! particular languages may offer (14). Ada has been established as the

single, standardized programming language within the U.S. Department of Defense (DoD).

The aim was to replace the vast number of languages and ad hoc techniques previously

in use with a standard programming paradigm to promote maintainability, reusability, and

portability. Program portability and reuse of software components are a, major concern of

the DoD as well as the software industry since both use a wide vaiiety of hardware platforms.

However, a problem introduced by the newness of Ada is a lack of potential experieace in

several key areas. For example, the effective use of Ada in solving graphics problems with

DoD requirements.

A problem of this type is evident in the flight simulator software that was partially

developed by several Air Force Institute of Technology (AFIT) students (15, 26, 37). The

program was written in C++ rather than Ada, and it exhibits many of the engineering

difficulties that prompted the development of Ada. This thesis will investigate the use of

Ada to replace C++/C in a graphics application.

1.*1

1.2 Problem Statemtnt

A problem with the use of Ada is a lack of potential experience in several key areas

such as the effcctive use of Ada in solving graphics problems with DoD requirements.

1.3 Hypothesis

The hypothesis of this thesis was that the advanced features of the Ada programming

language could be successfully interfaced with the advanced graphics libraries of a Silicon

Graphics System and existing C++ code.

1.4 Research Objective

The overall goal of this research was to investigate and to demonstrate Ada's applica-

bility as an impXementation language for a reusable graphical software component using an

object-oriented ?proach. During the course of the investigation, two of the following Ada

features were examined:

"* What problems exist with Ada 83 in building reusable graphics software components

using an object-oriented approach, and how these problems are addressed in Ada 9X,

"" How to connect Ada programs to existing C++ code.

1.5 Scope

The design and implementation of parts of a flight simulator will serve as the founda-

tion for the investigation of Ada's applicability as an implementation language for graphics

programs.

1.6 Assumptions

1.6.1 Hardware. A flight simulator written in C++ was executed on a Silicon

Graphics IRIS (SCI), so access to an SGI was necessary.

1-2

mV.

1.6.2 Software. We had access to the following sources of software:

9 Ada: The Verdix Ada Development System (VADS) was used. VADS provides users

with a complete software environment for developing Ada language applications. VADS

provides users with useful libraries for interfacing to the Silicon Graphics Graphics

Library, Font Manager Library, operating system calls, etc.

9 The C++ programming language: The AT/T C++ translator release 2.0 was used.

* Unix Standard Library: We were working within the Unix operating system. We

therefore were able to use Unix standard system calls and "C" software libraries.

* Previous Thesis Efforts: The work done by Captain Simpson (37) for controlling the

input devices was reused in this thesis.

1.7 Approach/Methodology

An incremental approach was taken in the development of this thesis prcject. First,

the domain of the flight simulator was analyzed and a set of components was selected.

Then the existing C++/C code and the object-oriented model were analyzed for design

of reusable software components. As a part of this, Ada bindings to C++ and C were

analyzed. Then alternatives for obtaining well-engineered reusable software components

were examined. Finally, the alternatives were analyzed, and the most effective one was

chosen and implemented.

1.8 Materials -and Equipments

The following materials and equipment were used in this research.

9 Target Machine : Silicon Graphics IRIS 4D Series

* Joystick : Microstick Joystick from CH Products

1-3

1.9 Summary

As software development and maintenance costs have continued to rise at ever increas-

ing rates, the use of standards as a solution to the problem has been suggested. Ada has

been established as the single, standardized programming language within the U.S. DoD to

replace the vast number of languages and ad hoc techniques previously in use to promote

reusability, maintainability, and portability. This thesis examines previous thesis work on

flight simulator software implemented in C++, and then builds on this work using Ada.

The objective of this thesis is to demonstrate and illustrate the feasibility of building

well-engineered reusable graphics software components in Ada.

1.10 Thesis Overview

This document contains five chapters. Chapter 2 is a literature review of object-

oriented technology, software reuse, and the contrasts of Ada and C++/C. Chapter 3 out-

lines the process used to examine the problem as well as the design of reusable software

components. Chapter 4 describes detailed design and implementation strategies in building

a well-engineered reusable set of components in conjunction with C++ routines in a class

library. Chapter 5 includes a summary and conclusions.

1-4

IL Literature Review

2.1 Introduction

The purpose of this chapter is to aid in the understanding of the discussion contained

in the following chapters. This chapter begins with a description of the need for object-

oriented techniques, followed by concepts of the object-oriented paradigm with the basic

analysis and design concepts. This description is followed by a description of software reuse,

especially focusing on reuse of code components. The features of Ada and C++/C are then

considered for similarities and contrasts. This is followed by a description of interfacing Ada

with C++/C and a description of the MICROSTICK device used in this study.

2.2 The Object-Oriented Paradigm

2.2.1 The Need for Object-Oriented Techniques. Among software engineers the

software crisis is a well known fact (8, 29). "The essence of the software crisis is simply that

it is much more difficult to build software than our intuition tells us it should be" (8:7). In

general, the software crisis is characterized by many problems, while managers' responses

for software development concentrate on the "bottom-line" issues such as: 1) inaccurate

schedule and cost estimates; 2) the lack of "productivity" from software engineers; and 3)

the lack of software quality (29). The major cause oi the software crisis is the complexity of

software and software itself (7). The previous situation highlighted the need for developing

and maintaining large complex software systems in a competitive and dynamic environment,

and it has driven interest in new approaches to software design and development. The goals

(modifiability, efficiency, reliability, understandability) and principles (modularity, abstrac-

tion, localization, information hiding, uniformity, completeness, confirmability) of software

engineering as stated by Goodenough, Ross, and Irvine (16) and Booch (8), provide the

foundation upon which software will be designed in the future. "Object-oriented design,

object-oriented programming, and object-based programming are methods that support the

goals and principles of software engineering" (31:76).

2-1

S /

2.2.2 Object-Orien ted (00) Paradigm. Although many discussions, have taken

place, little consensus has been reached as to exactly what is meant by "object orienta-

tion", even among leaders like Booch (7), Meyer (24), and Stroustrup (38). Henderson

and Edwards (17:146) deffine the object-oriented paradigm as follows: "The object-oriented

(00) paradigm, at its simplest, takes the same components of a software system: data and

procedures, but de-emphasizes the procedures, stressing instead the encapsulation of data

and procedural features together, exemplified by the clear and concise specification of the

module interface". The paradigm sprang from language, has matured into design, and has

recently moved into analysis. Several general concepts that are strongly related with the

00 paradigm will be discussed in this chapter: objects, classes, abstraction, inheritance, en-

capsulation, polymorphism, and dynamic binding. Although these concepts are basic to the

object-oriented paradigm, the various object-oriented communities often associate different

specifics with each concept. This section focuses on those concepts.

2.2.2.1 Objects. Booch (7) defines an object as follows:

An object is a tangible or visible entity that exhibits some well-defined behavior.
it has state, behavior, and a unique identity; the state of an object encom-
passes all of the properties of the object plus the current values of each of these

1* properties, the behavior is how an object acts and reacts, in terms of its state
changes and message passing, and identity is that property of an object which
distinguishes it from all other objects.

Objects, well-defined and limited, may contain both data structures and actions to be per-

formed on the structures. The basic principles behind objects are: 1) abstraction, 2) encap-

sulation, 3) modularity, 4) hierarchy, and 5) polymorphism (27).

1) Abstraction is the process of defining an object in just the right amount of detail

for the situation. The goal is to use just enough detail to differentiate a new object from

other objects at the same level. The easiest way to do this is to portray the operations the

object can perform before worrying about operations within the object.

2-2

2) Encapsulation involves hiding information about an object from the user. It hides

the details of the implementation because the user doesn't care how operations are imple-

mented, only how to use them.

3) Modularity follows the principle of divide and conquer: Divide the problem into

pieces and keep each piece of the solution in independent modules. The object is perfect for

modularity because it holds the data structures and op"-ations for each part of the solution.

The module is also loosely coupled because it is not tied closely to other parts of the program.

4) Hierarchy means that objects are abstracted in terms of the problem to be solved,

then described in more specific terms, with the objects adding characteristics or inheriting

others from existing objects.

5) Polymorphism refers to the ability of an object to assume multiple roles and shapes.

For instance, "overloading" is a fancy term for the simple practice of using an operator for

more than one type of data.

2.2.2.2 Classes. A class is a set of objects that share a common structure

and common behavior. Korson (21:42) defined a class as follows:

Ideally, a class is -.n implementation of an abstract data type. This means that the
implementation' details of the class are private to the class. The public interface
of such a class is composed of two kinds of class methods. The first kind consists
of functions that return meaningful abstractions about an instance's state. The
other kinds of methods are transformation procedures used to move an instance
from one valid state to another.

By grouping objects into classes, a problem can be abstracted. Class is the language construct

most commonly used to define abstract data types in object-oriented programming languages.

2.2.2.3 Abstraction. Abstraction is the fundamental concept of object ori-

entation. "An abstraction denotes the essential characteristics of an object that distinguish

it from all other kinds of objects and thus provides crisply defined conceptual boundaries,

relative to the perspective of the viewer" (7:39). Abstraction is one of the fundamental ways

that we humans cope with complexity. Abstraction encourages programmers and users to

2-3

think about complex applications in abstract terms. "The goal of abstraction is to isolate

those aspects that are important for some purpose and suppress those aspects that are unila-

portant" (32:16). There are two methods of abstraction: abstraction by specification and

abstraction by parameterization (21).

Abstraction by specification abstracts the specification of an entity from its implemen-

tation. This type of abstraction is supported by virtually every object-oriented language.

The public interface of a class constitutes the specification of that class. The interface

specifies the legitimate operators of the data contained in instances of the class.

Abstraction by parameterization abstracts the type of data to be manipulated from

the specification of how it is to be manipulated. This type of abstraction is supported by

most object-oriented languages at the operator level, but by only a few languages at the

class level.

t2.2.2.4 Inheritance. Inheritance is a relation between classes. "Inheritance is

the sharing of attributes and operations among classes based on a hierarchical relationship"

(32:3). It is not provided by conventional languages. "Inheritance is a way of defining some

useful construct in a central place and then automatically broadcasting that construct to

all the places where it could help. New functionality is no more developed by coding each

line from scratch, but by inheriting some useful class and describing only how the new one

differs" (13:12). Inheritance not only supports reuse across systems, but it directly facilitates

extensibility within a given system.

2.2.2.5 Encapsulation. Encapsulation is the way of building of methods

and data together within an object so that access to data is permitted only through the

object's own methods (2:35). "Abstraction and encapsulation are complementary concepts:

* abstraction focuses upon the outside view of an object and encapsulation - also known as

information hiding - prevents clients from seeing its inside view, where the behavior of the

abstraction is implemented" (7:45).

2-4

2.2.2.6 Polymorphism. As Cardell (9) points out there are many kinds of

polymorphism, but in general, polymiorph ismi means the ability to take more than one form.

The same operation may apply to miany different classes, that is, the same operation takes

on different forms in different classes. Because of this ability to refer to more than one class

of object, a polymorphic reference has both a dynamic and a static type associated with it

(21).

The dynamic type of a polymorphic reference may change from instant to instant

during the program execution. In strongly typed object-oriented environments, the run-time

system keeps all polymorphic references automatically tagged with their dynamic type.

The static type is determined from the declaration of the entity in the program text.

It is known at compile time and determines the set of valid types that the object can accept

at run-time.

2.2.2.7 Dynamic Binding. The binding discussed in this chapter is the bind-

ing of a procedure call to the code to be executed in response to the call. Dynamic binding

means that binding is clone later than compile-time, generally while the program is running.

"Dynamic binding is needed in loosely coupled collections where the customer's code cannot

predict the type of data to be operated on until the code is being run" (13:14). Dynamic

binding is intrinsic to the very essence of a loosely coupled collection. "In the object-oriented

world, dynamic binding is associated with polymorphism and inheritance in that a procc-

dure call associated with a polymorphic reference may depend on the dynamic type of that

reference" (21:46).

2.2.2.8 Terminology. This discussion introduces key concepts and defini-

tions from the 00 domain. Like any emerging technologies, 00 has many proponents with

differing opinions. Since object-oriented methodologies are in their early stage, like the vari-

ous object-oriented programming languages, terminology for the object-oriented mechanisms

differs among methodologies (2:189).

2-5

2.2.3 Object-Oriented System Life Cycle. "At the most general level, three

phases to the life cycle are generally agreed upon: 1) analysis, 2) design and 3) construc-

tion/implementation" (17: 143). Like a general software development life cycle, an object-

oriented development life cycle also has analysis, design, and implementation phases. Prob-

lems with traditional development using the classical life cycle include no iteration, no em-

phasis on reuse, and no unifying model to integrate the phases (21). In contrast to the

common structured systems analysis and design based largely on top-down functional de-

composition, object-oriented analysis and design has many attributes of both top-down and,

perhaps predominantly, bottom-up design. Since one of the aims of an 00 implementation

is the development of generic classes for storage in libraries, an approach which considers

both top-down analysis and bottom-up design simultaneously is likely to lead to the most

robust software systems (1'1:146). The object-oriented analysis and the object-oriented de-

sign phases work more closely together because of the commonality of the object model.

In one phase, the analyst identifies problem domain objects while in the next phase, the

designer specifies additional objects necessary for a specific computer-based solution. The

design process is repeated for these implementation-level objects.

2.2.3.1 Basic Analysis Concepts. "Object- Oriented Analysis (OOA) is a

method of analysis that examines requirements from the perspective of the classes and objects

found in the vocabulary of the problem domain" (7:37). It is concerned with constructing

a precise, concise, understandable, and correct model of the real world. "The analysis

model serves several purpose_.. It clarifies the requirements, it provides a basis for agreement

between the software requestor and the software developer, and it becomes the framework

for later design and implementation" (32:148). There are several OOA approaches (7, 10, 17,

32, 35) each with their own techniques. These methods can be summarized by the following

activities, which may overlap.

*Identify the classes/objects of problem space

*Identify the relationship between classes

2-6

* Identify the attribut 2s and methods of each class/object

* Specify the inter-object communication.

2.2.3.2 Basic Design Concepts. This section describes the fundamentals of

the object-oriented design phase of the object-oriented software life cycle. The different point

of view between the procedural design paradigm (top-down functional decomposition) and

object-oriented design is that the procedural paradigm takes a task-oriented point of view,

while the object-oriented design paradigm takes a modeling point of view (21). Booch defines

object-oriented design (OOD) as follows. "Object-oriented design is a method of design

encompassing the process of object-oriented decomposition and a notation for depicting

both logical and physical as well as static and dynamic models of the system under design"

(7:37). The application design process begins at a top level and proceeds through class

identification to a low level and then moves upward as low-level classes are designed based

on lower-level definitions. The object-oriented paradigm provides support for good design:

1) modularity, 2) information hiding, 3) weak coupling, 4) strong cohesion, 5) abstraction,

6) extensibility, and 7) integration (21). There are many sources of advice on what makes a

good design (10, 32).

2.2.3.3 Notation. To do analysis and design, we need a way to picture the

things we want to build, a notation for modeling the structure of object-oriented software.

"Any graphical representation of the object-oriented version of the overall software devel-

opment life cycle must take into account the high degree of overlap and implicit iteration"

(17:151) Various notations have been introduced by various authors (7, 10, 24, 32).

2.2.4 Benefits and Drawbacks of the Object-Or nted Approach. Like a classical

approach, the object-oriented approach also has its ben fits and drawbacks.

2.2.4.1 Benefits. The object-oriented paradigm offers the following benefits:

1) a way to manage complex software, 2) a "seamless" way to perform analysis, design

2-7

and implementation, 3) reusability, 4) maintairability and 5) extensibility (37:12-28). Booch

noted the following benefits by applying object-oriented design (7).

*Exploits the expressive power of all object-based and object-oriented programming

languages

e Encourages the reuse of software components

* Leads to systems that are more resilient to change

9 Reduces development risk

*Appeals to the working of human cognition

2.2.4.2 Drawbacks. Although the 00 approach has valuable benefits, it also

has some drawbacks that must be considered. There two acknowledged drawbacks to using

the object-oriented approach: 1) performance considerations, 2) start-up cost (7:216).

Early object-oriented programming languages such as Smalltalk were interpreted and

thus inefficient compared to a conventional programming language (32:10). Subsequently,

performance sensitive systems could not be designed and coded in object-oriented languages.

Today, with the introduction of new languages, OOD systems have improved in performance.

Initial investments in education, tool support, reorganization, and management support are

necessary in order to eventually realize the benefits of 001).

2.3 Reuse

Reuse is the use of previously acquired concepts (the reuse of ideas and knowledge) and

objects (the reuse of particular artifacts and components) in a new situation. It is the process

of building software systems from existing software rather than building software systems

from scratch. Very significant process has been made in the evolving field of software reuse.

The main motivation to reuse software artifacts is to increase software development and

maintenance productivity; this leads to higher quality, more reliable software, and conserva-

tion and preservation of software engineering expertise (14:3). Portability is a characteristic

2-8

of software closely relhted to reusability. It refers to the extent to which a software compo-

nent can be used in multiple machine environments. Thus reusability includes portability in

the sense that portability is necessary to achieve reusability across multiple machine envi-

ronments at least at code level.

-The U.S. DoD software engineering community is in its pursuit of software reuse, and

has seen evidence that the software reuse princ iple, when integrated into acquisition practices

and software engineering processes, provides a basis for dramatic improvement in the way

software intensive systems are developed and supported over their lifecycle. Availability

of the Ada language has spurred interest in reuse, and Ada serves as the implementation

language in many reuse projects. At the highest level, the DoD vision for reuse is to drive the

DoD software community from its current "re-invent the software" cycle to a proces s-driven,

domain-specific, architecture-centric, library-based way of constructing software. The DoD's

long-term strategy is to lead to the creation of a true "black-box" components industry (28).

There is great diversity in the software engineering technologies that involve some form

of software reuse. Typically, reuse involves the abstraction, selection, specialization, enid in-

tegration of artifacts, although different reuse techniques may emphasize or de-emphasize

certain of these. Krueger partitioned the different approaches to software reuse into eight

categories: high-level languages, design and code scavenging, source code components, soft-

ware schema, application generators, very high level languages, transformation systems, and

software architecture, analyzed them according to the following taxonomy (22:137).

"* Abstraction: What type of software artifacts are reused and what abstractions are

used to describe the artifacts?

"* Selection: How are reusable artifacts selected for reuse?

"* Specialization : How are generalized artifacts specialized for reuse?

"* Integration: How are reusable artifacts integrated to create a complete software sys-

tem?

2-9

2.3.1 Reuse in Design and Code Scavenging. The reusable artifacts in scavenging

are source code fragments. The abstractions for these artifacts are informal concepts that

a software developer has learned from previous experience. When a software developer

recognizes that some part of a new application is similar to one p)reviously written, a search for

existing code may lead to code fragments that can scavenged. Specialization of a scavenged

code may be done through manual editing. Integrating a scavenged code into a new context

may require some modification of the fragment, the context, or both. In ideal cases of

scavengin g,. large fragments of source code can be adapted without significant modification.

But in the worst case, lots of tinme can be wasted understanding, modifying, and debugging

a scavenged code rather than developing the equivalent software from scratch.

2.3.2 Reuse in Source Code Components. Currently, the best abstractions for

reusable components are domain-specific concepts, such as those found in the math libraries.

The area of code reuse, including deliverable code, test code, simulation code, or etc. is the

highest potential for near-term payoff. There are two different categories of code components

for reuse - "passive components" or "building blocks", which are used essentially unchanged,

and "dynamic components" or "generator", which generate a product for reuse (18:83-84).

Although selection in domain-specific components is easy since components can be classified,

organized, and retrieved using well defined properties of the domain, the ease of selection

in a general-purpose component library depends on the degree of the abstraction, classifi-

cation, and retrieval schemes. Generalized components with construct ion-t ime parameters

represent the most effective approach to component specification. Reusable components can

be specialized either by editing the source code directly or with mechanisms such as the

Ada generic or inheritance in object-oriented languages. Ada generics provide a level of

abstraction that isolates L.he software developer from many implementation details. Ada

generics can be parameterized with language constructs such as data types, data objects,

and functions. Module interconnection languages such as Ada typically provide the frame-

work for integrating components. Ada can integrate source code components written in C,

FORTRAN, and assembly. Naming and name binding are important module interconnection

2-10

issues in component reuse since reusable components aLe constructed independently of any

particular context, which can present problems such that names impor',ed into and exported

from the component may crash or be incorrectly bound in the nrw system. Ada is a particu-

larly good candidate for implementing reusable cGmponents since Ada provides mechanisms

to overcome some of these naming problems.

2.3.3 Reuse in Software Schlemas. The sc',ma approach emphasizes the reuse

of algorithms, abstract data types, and higher level abstractions. It is a formal extension

to reusable software components. For example, some algorithm books provide a library of

abstract descriptions for many basic computer science algorithms and data structures. Pro-

grammers can informally use these abstractions when writing source code. Large schema

libraries are difficult to use; however, automated assistance can help for schema selection.

Schemas are typically specialized either by substituting language constructs, code fragments,

or specification into parameterized parts of a schema or by choosing from a predefined enu-

meration of options. A simple approach to schiema integration is to use a module inter-

connection language. For example, if a schema instantiation produces Ada package code,

an instantiated schema can be treated as a conventional Ada package. More sophisticated

schema integration techniques rely on semantic specifications.

2.3.4 Reuse in Software Architecture. Software architectures are analogous to very

large-scale software schemas. Software architectures, however, focus on subsystems and their

interaction rather than data structures and algorithms.

2.3.5 Reusability in an Object-Oriented Approach. The object-oriented paradigm

combines design techniques and language features to provide strong support for reuse of

software modules. Reuse comes in a variety of forms. Some of the reuse in the object-

oriented paradigm is much the same as that in the procedural paradigm, bitt the.object-

oriented paradigm adds an additional type of reuse.

2-11

Every time an instance of a class is created, reuse occurs. This is similar to the

declaration of a variable of a specific type. The major difference is that the resulting class

instance is a much more complex structure than a simple variable. An instance of a class

provides a combination of data structures and operators on those data structures. This is

similar to (but more general than) library reuse with the conventional paradigm.

Inheritance provides levels of support for reuse (21). As part of the high-level design

phase, inheritance serves as a means of modeling generalization/specialization relationships.

These relationships appear in the form of classifications. A chair may be viewed as a special

type of furniture, as well as a general description of the more specific categories of rocking

chairs, straight chairs, and reclining chairs. This high-level use of inheritance encourages the

development of meaningful abstractions which, in turn, encourages reuse.

Often in actual design, the presence of mid-level abstractions, such as table and chair,

will be recognized and considered separately. The availability of an inheritance relation

enables the designer to "push higher", to identify commonalty among abstractions, and to

produce higher-level abstractions (e.g., furniture) from this commonality. By identifying this

commonality and moving it to a higher abstraction, it becomes available to be reused later

in the current design or in future designs. Filing cabinets and bookcases may be identified

later. Much of their description (attributes such as height, weight, color, etc.) may already

be available from the furniture abstraction. The benefits of this reuse prompt the designer

to search for higher and higher levels of abstraction.

In the low-level design phase, inheritance supports the reuse of an existing class as the

basis for the definition of a new class. An existing piece of code can be copied to a new

file and moi ified to fit its new purpose. This inheritance mechanism does not establish any

connection 1~etween the old piece of code and the new code.

For ex mple, algorithm reuse involves using the same algorithm across datastructures.

Using the data abstraction supported by object-oriented technology, such an algorithm is

2-12

--w 7- '77 WW

implemented at a high level of a class hierarchy and becomes automatically available to

subclasses.

These mechanisms promote reuse by means of interface abstraction. An interface

specification is the most abstract reusable artifact of a software system. It consists of a set

of messages that embody a coordinated set of behaviors. Classes whose instances perform the

role implied by these behaviors must provide a behavior implementation. These instances

can then be used wherever this common behavior is expected.

2.4 The Features of Ada

This section provides a quick overview of the advanced features of the Ada 'anguage.

The DoD designed Ada as a general-purpose language intended to embody and el force the

principles of software engineering in hopes of lowering the cost of the software life-cycle.

Ada's objectives were not to extend the realm of things that computers can do, but to

provide a single way to do the things that are now done in numerous incomiatible but

similar languages (13:38). "Ada is a design language that is suitable for the design and

implementation phases of the software life cycle. Ada directly embodies, encourages, and

enforces modern software engineering principles and methodologies" (30:163).

2.4.1 The Object Oriented Capabilities of Ada. Ada has been traditionally associ-

ated with Object-Oriented Design (OOD), which was exploited by Booch (7). However, OOD

can be extended more easily and smoothly through Object-Oriented Programming (OOP),

which has basically two additional features, inheritance and polymorphism, that cannot be

fully extended by object-based programming language such as Ada. Ada's suppo t for the

two additional features is less systematic than that found in C++, which fully supports these

features. Alternatively, one might think of OOP in terms of two programming paradigms,

which will be associated with OOP:

* variant programming: new abstracts may be constructed from existing ones so that the

programmer need only specify the differences between the new and old abstractions.

2-13

•i " I ' - _

* class-wide programming: classes of related abstractions may be handled in a unified

fashion, such that the programmer may systematically ignore their differences when

appropriate (1).

Ada provides the basis for supporting object-oriented programming with variant and class-

wide programming in the form of derived types, subtypes, packages, and generic units.

Each of these has its limitations such as type incompatibility by deriving from the parent

types, narrowing their applicability by subtyping, recompilation of the original abstraction

by breaking the original abstraction, and complicated generic parameters. Ada supports

several forms of static polymorphism: generic formal types, subprogramming overloading,

and implicit conversion of class-wide (real and integer) literals.

Recognizing limitations, the Ada 9X program is preparing a refined version of Ada to

update the Ada standard in accordance with ANSI and ISO procedures under the Ada Joint

Program Office (AJPO). The current Ada 9X review process is adding changes to improve

Ada's use in 00 development, programming-in-the-large and real-time programming. Ada

9X will provide improved support for 00 development in several ways (1):

* subprograms as objects: dynamically selecting subprog:ams

* reducing the need for recompilation

* programming by specialization/extension: defining a new entity which can be used

anywhere the original one could be, in exactly the same way without modification of

the original one.

Subprograms as objects provides the ability to associate operations (subprograms) with

objects, and to dynamically select and execute those operations, which is the basis for

run-time polymorphism. Programming by specialization/extension and reducing the need

for recompilation provides the ability to extend derived reuse, which is the basis for the

inheritance mechanism.

2-14

2.4.2 The Reusability of Ada. The Ada programming language has several mecb-

anisms which aid in the specification and development of reusable code. (19:486)

* Ada supports reusability through the package concept. This is a mechanism whereby

one can define an Abstract Data Type (ADT), and it supports the notion of information

hiding.

* Ada supports reusability through generics (generic procedures in Ada are mechanisms

which preserve the virtues of typing, while eliminating the negative aspects). Generics

can be procedures or packages - but reusable generic packages are a more powerful

concept than that of procedures.

2.4.3 Foreign Language Interface. One unique feature of Ada is its ability to in-

terface to other languages. The interface pragma allows an Ada program to call a program

written in another language such as C, FORTRAN or assembly language. A. Ada program

calling a subprogram written in another language must include a declaration for that subpro-

gram, written in the usual Ada notation for subprogram declarations. The actual code in the

other language plays the role of an Ada subprogram body, so the Ada program includes an

interface pragma ipstead of the actual subprogram body (11:807). An implementation may V

restrict the use of the interface pragma. For example, it might establish a correspondence

between certain predefined Ada types and types in the other language and require that each

subprogram parameter and function result belong to one of these types.

2.5 The Features of C++

C++ is a strongly-typed language developed by Bjarne Stroustrup at AT&T Bell

Laboratories as an extension of C. The primary difference between C++ and C is the support

C++ provides for the following: (23:580)

* Inlining and overloading of functions.

* Ability to provide default argument values.

2-15

/ .f . ". V•". " '

"* Argument pass-by-reference (in addition to the C language default pass-by-value).

"* Support of template functions and classes.

"* Support of abstract data types by providing for information hiding and the definition

of a public interface.

* Support for object-oriented programming.

The language supports object-oriented concepts such as abstract data type, inheritance,

polymorphism, and dynamic binding (20:396).

* Abstract Data Type: C++ provides two constructs for defining an ADT. The first one

is an extension of the struct construct and the other is the class construct.

e Inheritance: C++ allows the hierarchy of class definitions to inherit both method and,

instance variables from existing class definitions.

* Overloading/Overriding and Dynamic Binding- C++ allows overloading of function

names and operators. It allows single polymorphism but not parametric polymorphism

(or genericity) which is supported by many object-oriented languages and also Ada.

C++ also supports dynamic binding through virtual functions.

2.6 Ada/C++ Similarities and Contrasts

Programming language selection is not the major cost driver in a software development

environment (14). But languages facilitating software engineering methods and principles

can produce software easier to learn and understand, easier to reuse, easier to change and

maintain, and easier to interface with other languages and CASE tools. Both Ada and

C++ are general-purpose languages of roughly similar power and have features that modern

software engineering practice considers indispensable: modularity, information hiding, ab-

straction, structuring tools for large programs, and various mechanisms for parameterizing

software components. The following comparison and contrasts between Ada and C++ is

based on current versions of the languages. For Ada, the language is defined by ANSI/MIL-

2-16

- *-

STD-1815A-1983. For C++, the language is defined by version 2.1 of the AT&T CFRONT

translator.

Comparing Ada and C++ is not easy, if for no other reason than C++ is a language in

flux for which there is no stable definition, no approved standard reference, and no translator

validation.

C++ requires more knowledge than Ada, but this knowledge is ill-defined at the in-

terface between environment and language. This reduces portability and thus increases

maintenance costs more than comparable Ada software. C++ software is less reliable than

Ada since arrays in C++ are closely related to pointers, and the indexing operation is de-

scribed directly in terms of pointer arithmetic. The generic facility of Ada is an excellent

model of type parameterization to maximize software reuse rather than C++, although C++

provides a template which is close in spirit to Ada generics. C++ emphasizes ease of writing

rather than ease of reading. This makes C++ programs harder to transmit and maintain

(33:15). Ada has demonstrated maintainability and reliability for large-scale development.

Ada is safer but less flexible than C++. Currently, Ada has not been used extensively in

several key areas. A couple of important changes planned include extending Ada's data ati-

straction capabilities, adding object-oriented programming features, and improving contrl0

over concurrency for real-time applications (1).

C++ is already a widely accepted object-oriented language in the commercial area and

is becoming even more popular since it has a C and Unix base. C++ is highly flexible and

therefore less safe than Ada. The emerging C++ standards will help to increase portability

and maintainability of C++.

Table 2.1 shows some important language features and their relative support by the

two languages (6:2-9). Interfacing well with other languages is an important attribute of

any programming language. The C++ language can invoke directly C run time libraries

and existing C scftware with C interfaces. Ada defines an optional pragm-a interface for

interfacing to other languages. Some advantages depend on their compiler support.

2-17

" 'I

Feature Ada(only) Ada(+) Both(=) C++(+) C++(only)
Parameterized Types X
Safe Types X
Error Handling X -_
Concurrency X
External Interrupts X
Compilation Management X
Strong Types X X
Modularity X _

External I/O X
Extensible Typing X
Overloading X
Multilingual Support X
Polymorphism X
Inheritance X
Subprogram Variables X
Conditional Compilation X

Table 2.1. Ada and C++ Support for Key Language Features

2.6.1 Features Where Ada has an Advantage. The following paragraphs discusses

the features where the Ada language has an advantage over the C++ language (6:2-10).

"* Parameterized Types : A parameterized mechanism is useful for building strongly

typed reusable component libraries. Ada provides this useful support through generics.

Although some users of the present versions of the C++ language provide their own

tcmplate preprocessors for this feature, it is not available commercially in C++.

"* Safe Types: Ada provides run-time checks, array subscript variables and ranges. C++

does not provide bounds checking. C++ provides flexible dynamic memory allocation

which must be used carefully to prevent problems.

"* Error Handling: For reliable and maintainable systems, a reliable standard mechanism

for handling errors is essential. Ada provides user defined exceptions and some useful

predefined exceptions for error handling.

2-18

9 Concurrency :Ada provides support for concurrency with tasks for the efficient im-

plementation of a large system.

* External Interrupts : Ada provides a standard mechanism for handling interrupts from

the external environment as task entry points.

* Compilation Management :Efficient management of compi! ýtiori dependencies and

good compilation dependency information can not only save large amounts of com-

puter and human resources but also simplify the creation of software tools such as

configuration management tools, test generator and code analysis tools. These compi-

lation dependencies are well defined in Ada, but not as well defined in C++.

2.6.2 Features Where C++ has an Advantage. Listed below are the features whereý

C++ language has an advantage over the Ada language. (6:2-10)

"* Inheritance :C++ supports both single and multiple inheritance. This feature is

not available in Ada. The C++ inheritance is more powerful than the derived typed

mechanism in Ada. Ada inheritance is expected to appear in the Ada 9X language.

"* Polymorphism Languages : C++ supports polymorphism through its inheritance mech-

anism. Inheritance and polymorphism are expected in Ada 9X.

"* Subprogram Variables :C++ has pointers to functions. Pointers to subprograms are

expected in Ada 9X.

"* Conditional Compilation: C++ supports conditional compilation, via the preprocessor

mechanism.

2.7 Ada Interfacing (Binding) with C++/C

In general, translating programs from other languages into Ada is straightforward if

the source language is one of the block-oriented languages such as C. However, it is more

desirable to make use of existing subprograms or libraries developed in some other language

from inside Ada programs without having to translate everything into Ada. There is a need

2-19

in development of software systems for utilization of capabilities which are not inherently

supported by a chosen development language. For example, if a graphics capability was

required, the programmer typically used a specific vendor's graphics interface. In order to

overcome this deficiency in a cost-effective manner, bindings are required. An interfacing

(binding) is a set of code which allows the use of software and hardware that provides some

capability required for a given application. In the past, software systems tended to be built

around a specific product, which decreased portability. Standard interfaces were required

to provide portability. Ada provides mechanisms that allow the programmer to specify

interfacing which is no longer limited to a single machine. This section presents the naming

convention, parameter passing method, and an approach to making existing libraries and

programs written in C++/C usable from Ada.

2.7.1 Ada Interface. Ada has a complicated naming convention for its objects

that can be accessed from another language. For example, subprogram names are usually

encoded as follows: (12:21-25)

_A-subprogramnameLLXcc.parent

where:
subprogramname is the subprogram name.
LL is the line number of its definition.
X is S if defined in the spec and B for the body.
cc is the character number of its definition.
parent is the name of the parent unit, without the -A. prefix.

To access a Ada object, a user must be able to modify the Ada source code to know

where the subprogram is declared. Another big problem with the Ada naming convention

is that when you change the location of the subprogram in its source program, the external

name changes. Fortunately,. Ada provides the pragma that you can use to specify an un-

changing external symbol name for variable and function. These pragmas are externaLname,

interface, and interface-name. The pragma EXTERNAL-NAME allows users to specify an

external symbol name, or linkage name, for Ada variables or subprograms so that it can

be accessed from another language. The pragma INTERFACE allows users to call routines

2-20

-J

written in another language. The pragma INTERFACENAME allows users to access ex-

ternal objects such as common blocks, C global variables, and routines written in another

language.

Ada allows data to be passed by reference or by value using the formal argument

mode. To pass a parameter by reference users must use the in out parameter mode. To pass

a parameter by value users must use the in mode. However, arrays and records must always

be passed by address.

There are a couple of restrictions with the pragma interface (12:24).

e The types of parameters for C routines must be scalar, access or the predefined type

address, and all parameters must have mode in.

* The return types are limited to scalar, access or the predefined type address.

2.7.2 C Interface. C has the single naming convention for external symbols, which

include function names and global variables. The C compiler prepends an underscore char-

acter ('-') to external symbols. Additionally, function names and global variables produced

by the C compiler are unrestricted in length and case sensitive (12:15-16). For example, the

external symbols produced for the following code fragment are -add and _num3.

int add(int numl, int num2)
{

extern int num3;
return (numl + num2 + num3);

} \

C functions basically pass all parameters except arrays by value, which means that

only the contents of a parameter are passed to the called routine, not its address. Arrays

are passed by reference. However, C provides two operators users can use to work around

this parameter passing method: address operator (&) and indirection operator (,).

2-21

2.7.3 C++ Interface. Like Ada, C++ generates symbols that do not simply

have underscores prepended and appended to a function name. Although a data types and

function parameter passing method in C++ are basically the same, function symbol names

usually have a return type and parameter data types encoded in them. Fortunately, C++

provides a linkage specifier that causes C++ to generate a symbol name that conforms to

the C language interface. The AT&T C++ Language System Product Reference Manual

describes the following information about the linkage -pecifier (3:40). Linkage to non-C++

code fragments can be achieved using the following linkage specifier.

extern string-literal declaration
extern string -iteral { declaration-list}
where: wh•th

string-literal can be "C" or "C++" to indicate wh ther a
declaration should have C or C++ linkage. Detault is C++

declaration is a function or variable declaration
declaration-list is a list of function and variable declarations

Linkage specifications nest. A linkage specification does not establish a scope. A

linkage-specification may only occur in file scope. A lini age -specification for a class applies

to non-member functions first declared within it. A linkage-specification for a function also

applies to functions declared within it. A linkage declaration with a string that is unknown

to the implementation is an error.

2.7.-4 Ada Binding to C++/C Routines. Use of the Ada language facilitates porta-

bility, as compared to other languages. The features of the Ada language support portability

through abstraction and information hiding. Ada packaging allows the encapsulation of both

data and operations into a single unit, the enforcement of strong typing and information hid-

ing, the separation of the specification and body, and the isolation of the system dependent

features. The Ada package for calling the library functions or existing code gives the pro-

grammer basically the same functional entities and objects as the original.

/2-2

2-22 -

V([

r,/
-N~ -. /

There is a series of procedures which are required to successfully develop a binding.

For a complete Ada interface to a library and existing codes using the same subprogram and

variable nanies provided in the original C++/C version, the following six steps are necessary

(34: 156):

* Create parallel data types.

* Interface to external routines.

* Interface to external data.

* Link to external libraries.

e Test/Debug the interface.

* Optimize the interface.

2.7-4.1 Create parallel data types. Whenever access to a routine or variable

declared in an alternative language is required, any 'Ada variable used in conjunction with

the subroutine or variable is of a compatible data representation in both languages. When

creating Ada data types to parallel the types of other languages, the user should not assume

that the types or structures have the same implementation in Ada, even if they have the

same name; that is, a data structure declared in Ada must be identical to a data structure

declared in C++/C.

A way of creating parallel data types is to use a priori knowledge. There are some

types that the programmer knows are parallel between two language implementat ions from

reading the vendor's documentation. Neither Ada nor C++/C compilers are required to use

a particular size to represent any particular type, and an implementation is free to choose a

representation based on hardware considerations.

Another way of creating parallel data types is to use Ada representation specifications.

In Ada, we can define an exact duplicate of the physical layout of any data type in another

language once it is known. It can be done by Ada representation clauses. When the unclerly-

2-23

ing representation of a type has no analogue in one language, the data type can be defined by

the programmer using Ada representation specifications and UNCHECKEDCON VERSIONs.

The conversion of six different type categories can be described as follows. (41:PG4-2).

9 Simple Types: There are some simple Ada predefined types that correspond to C simple

types. When C++/C programs contain ambiguous assignments or uses of such types

or of integer/address conversion, the generic function UNCHECKED-_CONVERSION

offers a method for controlled easing of type conversion. For example, to implement

an Ada type to match a C++/C int type, a programmer could specify as follows:

- type C-nt is range -(2**15) .. (2**15) - 1;

- for C-nt'size use 16;

- Cint.use: C-nt;

The first line represents a type that has the same range as the int type in C++/C. The

second line ensures that the same amount of storage is used. The third line declares a

variable. Other simple typeb with different representations can be constructed similarly.

e Record Types: The same basic approach can be taken in the representation of record

types as with simple types. Both Ada and C++/C associate the record label with

a base address from which offsets to access individual components of records are cal-

culated. In Ada, as long as the record is composed of equivalent simple data types,

the offsets will be calculated similarly, and record structures will be identical. When

storage conventions are not so conveniently arranged, Ada representation specification

can be used for const,:ucting records.

* Array Types: Ada 2nd C++/C arrays are stored in row-major order. When defining

Ada array types that are parallel to C++/C array types, the standard representation

of an array in both languages is to associate the array label with the first component

and use this location to calculate an offset. The individual components should be com-

2-24

f"/

patible structures. Otherwise, representation specifications should be used to assure

that indiv: al component representations are identical.

e Dynamic Array Types: In C++/C, the size of a dynamic array is calculated by the

user, based on data known only to the user. C++/C arrays always start at index 0

while Ada arrays start with any index. Passing arrays from C++/C to Ada is possible

by creating an appropriate subtype. for the value. If a C++/C array is passed and

must be preserved over an open scope, a fixed-length array must be used in the Ada

program, making the Ada array at least as large as any possible C++/C parameter.

* Pointers and Address Types: Pointer and address types are implementation-specific.

But Ada's tactic of using host conventions usually allows the use of Ada pointer and

address types parallel to their C++/C counterparts. Otherwise Ada representation

specifications can be used to tailor the size and range of the data type.

9 String Types : A character string in C++/C is represented by a pointer to the first

character in an array of bytes. By convention, strings in C++/C are terminated by

a null character and store no explicit length. In Ada however, a string is represented

by a packed array of type CHARACTER with the maximum number of components

specified as part of type. A parallel type can be created using a declaration in Ada as

follows:

- type CString is access STRING (1..INTEGER'L ST)

2.7.-4.2 Interface to external routines. Once parallel types have been estab-

lished, the next step is to gain access to external routines provided in the interface target

package. This is accomplished in a two stage procedure: first, equivalent Ada subprogram

specifications are written, and second, the linkage to the external routine is declared. The .. .

first step can be a simple mapping of the external routine's name and parameters into an

Ada subprogram specification or can involve the development of code to make the behavior

of the external routine compatible with Ada. The second step is accomplished through use

of the pragma INTERFACE and pragma INTERFACI',NAME.

2-25

)~*

2.7.4.3 Interface to external data. The thiid step when building a complete

package from an existing C++/C library and program is to gain access to external variables

declared in C++/C from Ada. Some Ada compilers contain a pragma which allows the ac-

cessing of external objects directly, while others require the programmer to build an external

routine which returns the required data object as a parameter (34:159).

For example, the following programs illustrate interfaciag between Ada and C.

C program:

char *gets (;
int atoi ();
int service-number;
exterr void ada.put ();
test ()
{

char buf[80];
printf(" Enter an integer here: ");
get (buf);
service-number = atoi(buf);
ada-put(service-number);

waddch(window win,char [])
{

The printf call was replaced with ADA-PUT and an Ada package containing
the procedure ADA-PUT and interface declarations for the C entities were
written as follows.

with language;
package C.interface is

sevice.number : integer;
pragma interface.name(service-number,CSUBPPrefix & "service-number")

procedure waddstar(win : window; S : address);
procedure c-wadtlstr (win : window; str : address);
pragma interface(C, C.waddstr);
pragma interface-name(C-waddstr, CSUBPPREFIX & "waddstr");

2-26

_i ~ i ...

procedure ADAPUT(I integer);
pragma external (C, ADAPUT);
pragma external-name(ADAPUT, C-PREFIX & "ada-put");

procedure main;
pragma interface(C,main);
pragma interface-name(main, CSUBPPREFIX & "test");

end C-interface;
package body C-interface is

-this intermediate Ada module will convert an Ada string
-input into a c-string format before calling the C routine

procedure waddstr(win : window; S: string) is
T: string(1..(S'last + 1));

begin
T(1..S'last) := S;
T(S'last + 1) := ascii.nul;
c-waddstr(win, T'address);

end waddstr;
procedure ADA-PUT (I integer) is
begin

put(I);
end ADA-PUT;
end C-interface;

Now a simple Ada "wrapper" to call the original C functions is written
so that the linker a.Id can resolve all the references in the modules
and perform its usual elaboration order checks.

with C-interface; use Cfinterface;
procedure driver is

win: window;
begin

main;
waddstr(win,"hellow");

end Driver;

2-27

.- t.,: ,. _2 .. . -. 7/i"

- A. l " . - .: '

"1- ! / ;, "

2.7.4.4 Link to External Libraries. The fourth step in the Ada interface is

the ability to link the routines and data types built in the previous steps with the external ""

libraries. It is typically required to place the names of the external object files in the link

path. For example, illustrated programs compiling both the C and Ada portions can be done

by compiling the C portion first, then using the Ada linker to construct the 'main' program

driver and the C objects in the link.

.2.7.4.5 Test/Debug the Interface. The fifth step is testing and debugging the

binding. Since a good binding will be used by a wide variety of software systems, the testing

and debugging should be done thoroughly in order to construct a reliable system.

2.7.4.6 Optimize the Interface. The final step in the interface process is

to reduce the overhead resulting from frequent subprogram calls to intermediate routines

written in Ada. The predefined pragma INLINE provides the solution.

2.7.5 Program Conversion. One modular approach is to write an Ada "wrap-

per" program that surrounds the subprograms in another language and allows them to be

gradually converted (41:PG4-12). Pragma INTERFACE and pragma INTERFACE-NAME

are useful for this gradual replacement with pragma EXTERNAL and pargma EXTER-

NAL.NAME that allow subprograms in other languages to call Ada subprograms, exactly

the reverse of the INTERFACE and INTERFA CENAME pragmas.

The real benefit for the user is that new portions of large programs can be developed in

Ada, but existing, tested, working code need not be replaced wholesale. Individual modules

can be replaced by newly developed Ada code without undue restrictions on the language

of calling or called subprograms. An additional benefit is that once subprogram parameters

are defined in Ada, the compiler will perform its usual type checking across subprograms.

2-28

• " .-,,. ,/ . ; • . , > ', . .

2.8 The MICROSTICKI

The MICROSTICK is a professional high quality point and select device. One of its

standard features includes a resolution of 1 part in 4096 and six types of movement. These

features allow users to change gears and use the MICROSTICK for both high-resolution

accuracy and fast poiniung speed. The .. ICROTI..CK is connected te a romputer or a

terminal via a 25-pin RS232 connector. The MICROSTICK outputs an 18 byte string of

ASCII characters. The outputs of MICROSTICK are described in the table 2.2. Byte 1

corresponds to a delimiter, Byte 2 describes the state of button 2, etc.

Byte Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

What Delimiter Button 1 Button 2 Button 3

Example $ _ 0 1 0
Byte Byte 7 Byte 8-11 Byte 12 Byte 13-16 Byte 17-18 _

What x value _ y value Delimiter I
Example 1513 0028 [cr][lf]

Table 2.2. Outputs of MICROSTICK

This output allows easy interface to a microcomputer or a terminal. In addition, the

MICROSTICK microprocessor-based design allows for user-specified models of operations

that permit easy adaptation to most applications. The user's manual describes the MICRO-

STICK and suggests ways to realize its full potential.

The MICROSTICK can be controlled by Graphics, CAD/CAM or Text Editing soft-

ware. Hence, software controlling the MICROSTICK is a good candidate for use in this

research.

2.9 Summary

This chapter has introduced the features of the object-oriented paradigm, software

reuse, the features of Ada and C++ languages, and the MICROSTICK.

The object-oriented paradigm represents a more intuitive way to program than using

procedurally oriented techniques. The object-oriented approach is based upon the concepts:

2-29

- ./

objects, classes, abstraction, inheritance, encapsulation, polymorphism, and dynamic bind-

ing. The object-oriented paradigm offers a way to manage the complexity inherent in a

software system, and supports the goals and principles of software engineering.--

Reuse is the use of previously acquired concepts (the reuse of ideas and knowledge) 7

and objects (the reuse of particular artifacts and components) in a new situation. It is the

process of building software systems from existing software rather than building software

systems from scratch. The main motivation to reuse software artifacts is to increase software

development and maintenance productivity in order to obtain higher quality, more reliable

software, and conserve and preserve software engineering expertise. There is a great diversity

in the software engineering technologies that involve some form of software reuse. Typically,

reuse involves the abstraction, selection, specialization, and integration of artifacts, although

different reuse techniques may emphasize or de-emphasize some of these.

Programming language selection is not the major cost driver in a software development

environmen t. But a language f acilitating software engineering methods and principles can

produce software easier to learn and understand, easier to reuse, easier to change and main-

tain, and easier to interface with other languages and CASE tools. Both Ada and C++ are

general-purpose languages of roughly similar power. Both have features that modern soft-

ware engineering practice considers indispensable such as modularity, information hiding,

abstraction, structuring tools for large programs, and various mechanisms for parametriz-

ing software components. C++ requires more knowledge than Ada, but this knowledge is

ill-defined at the interface between environment and language. This reduces portability and

thus increases maintenance costs over comparable Ada software. C++ software is less reli-

able than Ada since arrays in C++ are closely related to pointers, and the indexing operation

is described directly in terms of pointer arithmetic. The generic facility of Ada is an excel-

lent model of type parameterization to maximize software reuse, although C++ provides the

template which is close in spirit to Ada generics. C++ emphasizes ease of writing rather

than ease of reading. This, makes C++ programs harder to transmit and maintain. Ada is

safer but less flexible than C++.

2-30

Translating programs from other languages into Ada is straightforward if the source

language is one of the block-oriented languages such as C. However, it is more desirable

to make use of subprograms or libraries developed in some other language from inside Ada

programs without having to translate everything into Ada. For a complete Ada interface to
'7

another language, the following six steps are necessary

* Create Ada data types.

* Interface to external routines.

e Interface to external data.

* Link to external libraries.

* Test/debug the interface.

* Optimize the interface.

The MICROSTICK is a professional high quality point and select device. The de-

vice allows users to change gears and use the MICROSTICK for both high-resolution accu-

racy and fast pointing speed. Connecting is done through a 25-pin RS232 connector. The

MICROSTICK outputs an 18 byte string of ASCII characters. Software controlling the

MICROSTICK will be used in this research.

2'

2-31

I ,' -

III. Analysis/Design

3.1 Introduction

This chapter describes the analysis and'design phase of this thesis work. The previous

research efforts by other AFIT students have generated many objects. Each of the objects

can be reused, but the reuse process may differ depending on the representation of each of

the objects and on the effort to reuse. This chapter is concerned with derived reuse that is

accomplished via the 00 principle of classes/objects and their relationships. As a part of

this, several ways of building Ada software components are discussed. The discussion will

range from domain analysis and component identification to the development of effective

reusable software components for flight simulator applications. The concerns are the char-

acteristics of good reusable software components, such as maintainability, understandability,

ease of use, the importance of quality, and generality.

When building a reusable software component, a systematic approach to identify and

to develop reusable components is needed. This usually comes from domain analysis that

leads to the identification of common obje Ats, operations, and structures. Reusable code

components are designed with the following goals in mind:

"* Reusability: The design should provide for reusing existing code and a framework that

enables the reuse of new code.

"* Extensibility: The design should be constructed so that future additions to the design

can be made with a minimum effort.

"* Utility: Design of each component should include useful, easy, and flexible object

functions.

3.2 Analysis

While the focus of this thesis is the design and implementation of a reusable component

to evaluate the features of Ada, it is not possible to simply start with a design. The analysis

3-1

should be done first in order to have a starting point for the design. Analysis is concerned

with devising a precise, concise, understandable, and correct model of the real world. An

analysis model is built to abstract essential aspects of the application domain without regard

for eventual implementation. This model contains objects found in the application, including

a description of the properties of the objects and their behavior.

As a part of the analysis, the understanding of the system and object notations used

in this thesis was required. This came from Captain Simpson's system and object notations

(37). The analysis started with domain analysis of the flight simulator.

A domain analysis is an investigation of a specific domain or application area to iden-

tify a common "generic paradigm" and to identify candidate reusable components for the

domain (14:13). A domain analysis is similar to a system analysis, but is much broader in

scope. The domain analysis results in development of a domain model that provides the

framework for development of reusable software components. In other words, it leads to the

identification of common objects, operations, and structures. One of the most important

things in performing a commonality study is a level of commonality, which is captured by

means of abstraction/decomposition, generalization/specialization and parameterization.

There are several techniques that can be used in performing a commonality study. One

of them is an OOA software decomposition technique based on the classes of objects, which

are viewed as a "high-level abstraction", as in an ADT. An ADT is a class of objects defined

by a set of operations available on them and the abstract properties of these operations.

An OOA of the domain and each member of the domain representation set can lead to

the identification of commonality across app'lications, and can be used as a good starting

point for the development of a domain modei. and associated reusable software components.

A class in an object model, as Booch points, out, is a set of objects that have a common

structure and common behavior. The object\ class is a candidate reusable component for

the domain. Therefore an OOA of the domai can serve as domain analysis for building a

reusable software component.

3-2

A W •

The main purpose of the analysis phase was to identify potential reusable software

components. The identification of reusable components was based mainly on the flight

simulator object model shown in Appendix A (37). Several base classes were identified

as reusable components, then the low level inputs (Joystick and RS232 Port classes) were

selected as reusable components for use in this thesis. The Joystick and RS232 port are not

typical graphics components, but they work much like graphics components. The system

interface to control the I/0 devices is essentially required to use system calls written in

C much like Graphics Library interfaces. Hence, software components controlling the low

level devices such as I/0 and Graphics devices are good candidates for reusable software

,components, and they .Illustrate the same principles as we would find in building reusable

graphics components.

JOYSTIC g FORTClse
S~DISPORT

UURAGF DISRBTESCE

RS232E POT R53 PORT POT

MANAGE ORT g
RS23 POre RENAGRADER

• Figure 3.1. Design of Joystick and RS232 Port Classes ..

"The'neit step was to analyze the joystick class and the RS232 port classes and their

relationship among their class members in more detail. The detailed analysis was based

mainly upon the sources available. The main available sources of information for analysis

3-3

S---•... .? "\\,, -. , ,

were the user's manual for the joystick, previously written C++ routines, and the object-

oriented model. The object-oriented model of the Joystick and RS232 port objects are shown

in the figure 3.1. They served as a basic domain model for building reusable components in

this thesis.

The joystick communicates with the computer through an RS232 port. The RS232

port was accessed through Unix system calls. The Joystick used both the Managed RS232

Port and the Distributed RS232 Port. The Distributed RS232 Port provides a transparent

interface with another machine through the Unix socket. Since both the Unmanaged RS232

Port and the Distributed RS232 Port have common methods, an abstract class named "Port"

was created. The "Disport" object is the "main" program, which makes and runs the Port

Reader. The Port Manager object is responsible for the extra checking of port usage or

different machines.

The next step was to identify existing code that could be reused in the design and

implementation in order to reduce the overall effort required. The reused code came from

the Unix system library and the flight simulator class library. For example, the Unix system

library is required to control a hardware device. But reusable code was written in C++

or C and was not visible directly from Ada. For a successful Ada binding to C++ and

C, the binding feasibility was analyzed. There is a series of procedures that is required to

successfully develop a binding. For a complete Ada binding to a library and existing code

using the same subprogram and variable names provided in the original C++ or C version,

the following steps are necessary.

"* Create parallel data types.

"* Interface to external symbols (routine and data).

"* Link to external libraries.

Whenever access to routines or variables declared in an alternative language is required, any

Ada variable used in conjunction with the subroutine or variable is compatible with the C++

or C data representation. Once these parallel types have been established, the next step is

3-4

to gain access to external routines and data provided in the interface target language. This

is accomplished in a two stage procedure: first, equivalent Ada subprogram specifications

are written, and second, the linkage to the external routine and data is declared. The first /
step can be a simple mapping of external routine and data names and parameters into an

Ada subprogram specification. The second step is accomplished through use of the pragma

INTERFACE and pragma INTERFACENAME. Linking the symbols built in Ada with the

external C++ or C symbols is done by the Ada linker. The detailed binding process is

presented in chapter 2.

For each class object, a detailed analysis was performed. Basically, the Unman-

agedRS232 Port class was a wrapper class to call Unix system calls to control an RS232 port

for the input on one machine. Captain Simpson's code was instrumental in its detailed Unix

system calls to control the RS232 port (37). Using Captain Simpson's code and a variety of

Unix system calls (36), all information necessary for analyzing a wrapper class was obtained.

The primary motivation for making a wrapper class is to make library or operating system

routines easier to use. Thus, only the file descriptor was needed once the RS232 Port was

opened. Most of the complexity occurred in the initialization of the port. Given the Unman-

agedRS232 Port, this work shifted into how to reuse existing C code within Ada. Most of

the Unix system calls in the UnmanagedRS232 Port class were used to control I/O devices,

and some had complicated data structures. Thus, successful development of a binding (in-

terfacing) to Unix system calls was required. Fortunately, VADS provided the 'graphiclib'

and 'publiclib' libraries which provide ways to interface with Unix system calls (41). These

libraries provided parallel data structures between Ada and C corresponding to most of the

system calls for I/O and graphic devices. For example, the IOCTL system call was needed

to represent the way the port should function, such as enable receiver, enable signals, and

enable user specified baud rate. VADS provided exactly the same data representation with .-
it. ,

/

Another big concern with Captain Simpson's object model was how data transfer

occurred between two computers. However, I didn't analyze it in much detail since my

3-5 ,"

/

intention was to reuse it. By reuse of these C++ routines, features of Ada and the C++

class library interface can be evaluated.

The analysis of the Joystick class proceeded in a manner similar to the analysis of the

RS232 port class. One major concern with the Joystick class was the degree of concurrency.

In certain modes, the joystick would operate independently of the computer. In addition,

the Unix operating system was capable of multiple processes running at the same time in a

time sharing mode. The Unix operating system input routines associated with the joystick

would be part of a separate process from the one ruining the flight simulator. Identifying

concurrency in the analysis phase :,iade the issue of concurrency easier to handle in the

implementation phase because task types in Ada were known.

The methods and attributes needed for each class within their class hierarchy were

analyzed. The main concern with analyzing methods and attributes was with their reuse.

It seemed that. all methods providing for the classes were methods that the object could

provide using only the state information contained within it. The rest of the classes in figure

3.1 were analyzed in a similar manner.

3.3 Design

The design of a software system is one of the most important parts of a software

development effort. The analysis was done by examining the relationships between the

object-oriented model and domain model, by analyzing Ada bindings tco C++ and C, and by

analyzing the object-oriented model. The design decisions were then made and details added

to the model in order to describe and optimize the implementation. The overall idea was to

produce a reusable 9oftware component that users could use in other applications without

modification or with providing parameters. The main goal in designing and implementing

each component was the ease of use and reusability (extensibility and main t'ainability were

derived from designing for reusability).

Making the component easy to use for the designer who plans to use the interface of the

component is centered totally upon the methods that are offered by the component. When

3-6

used in this manner, the component can be viewed as a "black box". Information hiding and

encapsulation derived from abstraction of the component interface is the overriding principle

in making components easy to use.

The main idea to build reusable software component was to look at the software com-

ponent from the perspective of a potential user of a class. All components were constructed

from the standpoint that they may be used in other, possibly unrelated applications. One of

the most effective ways of accomplishing this is to look at the component in isolation from

the rest of the system being built.

The design of such reusable software components presents the design with a set of

charact'.,ristics of reusable components. There are several important characteristics of com-

ponents intended for reuse (18:84). One of the characteristics of reusable components is a

component's interface. The syntactic interfaces specify compile-time invariants that deter-

mine how components fit together, and semantic interfaces specify execution-time invariants

that determine what the component computes. Another important characteristic of reusable

components is abstraction, which was mentioned in the previous chapter as the most pow-

erful' tool available to the human. The idea of function abstraction is that a function F may

be specified entirely by an input - output relationship. The user of a component based on

function abstraction need not know how the function is implemented. Another important

abstraction technique is data abstraction, in which data as well as function implementation

may be hidden from the user. With this abstraction technique and componen t's interface

approach, ,the hidden data characterizes the current state, which may be transformed by

means of the set of internal (hidden) operations. However, it is much more difficult to define

how one should go about designing components to exhibit these properties.

Comp~nents that incorporate these techniques are usually referred to as objects and

are said to b~ object-oriented. The object i,- a reusable software component having a hidden

state and a s t of operations or capabilities for transforming the state. OOD has been widely

accepted as being a method which is likely to lead to substantially increased software reuse,

with abstract objects being perceived as the natural unit of reuse. The class to which such

3-7

I V. -

objects belong resemble ADTs in many ways. ADT is a class of objects defined by a set of

operations available on them and the abstract properties of these operations.

OOD promotes reuse by means of interface abstraction - use of the interface does not

require knowledge of the implementation, and inheritance mechanisms - inheritance is a

mechanism for deriving one abstraction from another, specifying only the difference between

the new (derived) and old (parent). This inheritance mechanism establishes a relationship

between these abstractions, usually a dependency of the derived class on the parent with the

benefit of eliminating the need to recode each new abstraction form scratch. This increases

software productivity through abstraction reuse.

The design of the reusable Joystick and RS232 Port components was not considered a

main effort since the OOD model was reused. This model focused on r,_Isability with C++.

For example, "UnmanagedRS232_Port" and "Distributed_-RS232_Port" were inherited frCm

the abstract class "Port". Given this relationship, the "Joystick" instantiated any type of

"Port" and used polymorphic methods to use any type of Port because this polymorphism

was provided by C++.

However, redesign was required for adapting to the Ada culture. The first option was to

make each Port a component of the Joystick since Ada does nP5 suppc.rt run-time polymor-

phism. In addition, two more modifications were performed. The "ManagedRS232_Port"

was not inherited from "UnmanagedRS232_Port" because it acts just the same as the "Un-

managedRS232_Port". The "Ada-wrapper" for wrapping C++ routines was added to sur-

round the C++ class members and allow them to be gradually replaced later. The modified

Joystick and RS232 Port classes OOD model is depicted in figure 3.2.

The second option was to make a pointer to a "Port" class object a component of the

"Joystick" class. A pointer to a "Port" class object is now a component of the "Joystick".

This relationship makes "Joystick" instantiate any type of "Port" and use polymorphic

methods to use any type of Port. This option was taken because it provides a higher abstract

view of port objects, and also, Ada 9X provides run-time polymorphism. The design of this

3-8

JOYSTICK DISPORT

UNMANAGE DISTRIBUTEM SOCKET
RS232 POR RS232 PORT

PORT WRAPPER

Figure 3.2. Option 1: Design of Joystick and RS232 Port Classes

modification appears in figure 3.3. The detailed design of the Joystick and RS232 port are

shown in the Appendix A.

Since one of the main purposes of this thesis was to access existing C++/C routines,

the design of the joystick and RS232 Port components were conceptually separated by two

subcomponents, one to control an RS232 port for the input on one machine, the other to

control an RS232 port for getting data from one machine to the other. The former was

intended to have routines written in Ada, and the latter was intended to have routines

written in C++. By separating components, this design was able to evaluate the features of

Ada interfacing with a C++ classes library through the "Ada-Wrapper" class.

3.3.1 Alternative Methods for Design of a Reusable Component. Several methods

for building a well-engineered reusable component were considered. Each alternative achieves

the goal of building reusable components by having some effect on 00 mechanisms with

Ada language features, such as generic units with default formal parameters (both objects

3-9

7X

JOYSICK ORTDISPORT

\B

ID D

I • / AD A
POR WRAPPE

Figure 3.3. Option 2: Design of Joystick and RS232 Port Classes

and subprograms), strong data typing, derived types and subprograms, and subprogram

overloading. These alternatives address not only to a limited extent all the fundamental
/

features of the object-oriented paradigm in Ada, but also the conflicting goals that arise in

the design of reusable software. A
3.3.2 Abstract State Machine (ASM) Approach. The most direct representation

of an object is a state encapsulating package (termed abstract state machine approach)

exporting a set of operations that can be used to access and update the object state. ASM

is a kind of "black-box" approach. The user is provided with a high-level interface to the

components. There is no direct access to the data structures themselves. All access is

through the operations provided in the interface. Using generic packages, this approach can

be extended to emulate a class. The UnmanagedRS232 port object, for example, can be

represented explictly in Ada as an ASM package of form:

with port; /

3-10
./

//

generic
package UnmanagedRS232_Port is

function Close-Port (OB : in object) return boolean;
procedure FlushQueue (OB : in object)

package body UnmanagedRS232_Port is
type object is record

port-number : port.port-numbers; - port number of device (minus 1)
ttytype : tty.termio; - port settings
port-speed: unsigned-types.unsignedcshort-integer; - port speed setting

end record;

A

A generic state-encapsulating package with this interface defines an object template

from which multiple structurally identical instances can be generated. However, generic

packages are static entities that can only be instantiated at compile time, and thus do not

support the concept of dynamically instantiatable objects identified by references, let alone

support the accompanying mechanisms of inheritance, polymorphism and dynamic binding.

3.3.3 Task Approach. The second method is to represent objects as tasks. This

method can support dynamically instantiatable classes and the notion of concurrency. It

cza also be used to realize a form of dynamic binding. In this approach the class Joystick

can be represented by a task type of the form:

task type Joystick is
entry get -coordinates(x-value: in out integer;

y-value: in out integer;
but1 : in out integer;
but2 : in out integer;
but3 : in out integer;
flag : in out boolean);

entry SetJoystickMode(new-mode: in joystick-mode);

3-11

S .. . -. ' -

One of the main advantages of this approach is that it supports the notion of concur-

rency and enables objects to be active. It can also be used to realize a form of dynamic

binding because Ada permits a task to define several different 'accept' statements (method

bodies) for each entry (method) exported in the interface. By parameterizing the task with

a flag indicating which of the 'accept' statements is to be executed, it is possible for dif-

ferent instances of a single task type to provide alternative implementations for the entry

concerned. However, the problem with this method is that classes emulated by task types

in Ada can not provide support for inheritance. Another problem is that they can not be

library units (5:184-185).

3.3.4 ADT Approach. In addition to the above two approaches, the notion of ADT

can be used for representing objects and classes. In this method, an object is defined by a

package exporting an ADT. The data structure is declared in the private section in a package

specification, thus the user is "stuck" with the data structure provided by the designer. To

change it, he must change both the specification where the data structure is defined and

the body. This approach differs from the ASM approach in that the interface consists of

both the predefined set of operations and the data structure itself, but the state of the data

is not captured (14:45). The package exporting the type and associated methods does not

itself represent an object but rather variables of the exported data type, and %the package

defining the ADT corresponds more to a class, therefore, than to an object. The reference

semantics and the dynamically instantiated objects are provided by making the exported

type an access type rather than a static type. The main advantage of this method is that

it provides limited support for two important mechanisms associated with classes/objects,

inheritance and polymorphism through the variant and class-wide programming. This can

provide a representation of inheritance with respect to the operations associated with a class.

The following example shows how the use of this can implement inheritance.

Package Port is
Type Port-Type is (UnmanagedRS232_PortType, DistributedRS232_PortType)

3-12

•/ • - . -

-declare the variant record.
Type Port-Record is private;
type Port is access Port-Record;
subtype UnmanagedRS232_Port is Port;,
subtype DistributedRS232_Port is Port;

function Unmanaged-PortOpen(Self: Unrnanaged.RS232_Port) return boolean;
function DistributedPortOpen(Self: DistributedRS232_Port) return boolean;
function PortOpen(Self: Port-Type) return boolean;

private
Type Port-Record (Class: Port-Type) is

record
Port-Open : Boolean;
case Class is
when UnmanagedRS232_PortType =•

PortFD : integer;
Port-Speed : integer;

when Distributed.RS232_PortType =•
Data-Socket : Socket;
Cmd.Socket : Socket;

end case;
end record;

end Port;

However, the main shortcoming of the derived type and subtype mechanisms is that

they do not permit the set of state variables associated with an abstraction to be extended.

Building a new system from pre-existing components is not possible without modification

or adaptation to the specific requirements of the new system to fully facilitate reuse. For

example, the record type with variant part is used to model Port-Record. The actual struc-

ture and processing depends on their Port-Type, which is used as a discriminant. How-

ever there are several problems with this approach. For example, wherever code exists to

handle Port-Record, case statements must be used to determine the actual subtype of the

Port-Record prior to its processing. For example, the following program shows how the

actual subtype is determined.

3-13

1//

function Port-Open (Self: Port-Type) return boolean is
begin

case self.Class is
when UnmanagedRS232_PortType =\

return UnmanagedPort Open(Self);
when DistributedRS232_PortType •'

return DistributedPort_-Open(Self);
when others = return false;

end case;
end

This variant approach is fragile in maintenance. For example, if a programmer wants to

modify the system to support a new Port-Type (e.g., Y.21_type), then type Port-Type must

be modified, as must type Port-Record, as well as any subprograms that handle Port-Type or

Port-Record, even if these operations do not require any additional logic for the X.21_type.

3.3.5 Generic Approach. Another method for representing classes and objects is to

use Ada generic units to prolide components which are tailorable to user-defined types. It

provides flexibility while simplifying use. Types and operations on the types are defined, and

the types can then be used to instantiate the generics and the operations will get pulled along.

The major advantage of this approach is that it incorporates strong typing and is flexible.

However, the user would need to supply a large number of generic parameters. This burden

can be alleviated by the judicious use of default parameters. Generics can be exploited in

the development of reusable components. Low-level components can be designed as generic

packages or subprograms. A set of higher-level parts components can then be built from

multiple levels of these generic units. The user provides actual parameters to instantiate
y

the generic components and tailor them to his application. This approach would be used

with the ASM or ADT approach. Effective use of generic units for the creation of reusable

components requires reconciliation between the complexity of the generic specification and

the ease of use of the component.

3-14

3.3.6 Using Ada 9X. Ada 9X allows ADTs to have user-defined initialization and

finalization and generalizes user-defined equality/inequality for any type. Ada 9X also adds '"

class-wide operations as well as run-time polymorphism within a class of related types as an

option for programmers, while retaining Ada's generally static type model.

Ada 9X provides support for the paradigm of object-oriented programming (OOP)

through powerful mechanisms for variant and class-wide programming and child library

units. For example, the limitations of the Ada 83 ADT approach can be addressed with Ada

9X. With Ada 9X, the programmer can use tagged type extension and subprogram dispatch

to simplify the system, handling each variant as a derived type extension, eliminating variant

records and case statements. Processing for each kind of Port-Record is localized to a type,

and dispatch will insure that the proper operation is called for in each instance. For example,

the above Ada 83 code will be translated into Ada 9X code as follows:

Package Port is
type Port is tagged private;
function PortOpen(Self : Port) return boolean;

type UnmanagedRS232_Port is new Port with private;
function PortOpen(Self : UnmanagedRS232_Port) return boolean;
type DistributedRS232_Port is new Port with private;
function PortOpen(Self: DistributedRS232_Port) return boolean;

private
type Port is tagged;

record
Port-Open: Boolean;

end record;

end Port;

Now the variant record type has been replaced with a Port and two types derived from

it. Type UnmanagedRS232_Port extends the Port and has its own Port-Open function.

Each derived type inherited the primitive operation of its parent type Port. Each derived

type has its own Port-Open procedure, and overrides function Port-Open of the parent

3-15

A

function Port-Open. In addition, the new type can contain additional components, and

one can define new operations. Instead of the single function Port-Open embodying a case

statement as in the Ada 83 solution, the Ada 9X solution distributes the logic for handling

Port-Record to each specific Port-Type, without redundancy.

function PortOpen(Self: Port) return boolean is
begin

end
function PortOpen(Self: UnmanagedRS232_Port) return boolean;
begin

Port-Open(Port (self));

end

Each body for PortOpen encloses just the code relevant to the type, and delegates

additional processing to an ancestor via an explicit type conversion. In Ada 9X, view conver-

sions to a tagged class-wide type preserve the tag of the object to permit repeated dispatch

within the class determined by the target type.

If a new kind of Port-Type for special purpose must be added, it may be done without

disturbance or recompilation of the existing system code as a separate package. The following

example program shows how a new variant can be added.

with Port;
package Port.NewPort is

type X.21_port is new port.port with private;
function PortOpen(Self : X.21_Port) return boolean;

Ihowever, objects of Port'class are of unknown, varying size, due to the possibility of

extensions. For the Port, the set of values of the class-wide type Port'class is the union of

the set of values of Port and all of its derivatives. For this reason, Ada 9X treats them

as unconstrained, analogous to unconstrained array types (e.g., string) in Ada 83 (1). For

3-16

example, when a class-wide type, Port'class, appears as the designated type in an access

type declaration, the resulting type may designate any object within the class rooted at

Port. Using such class-wide access types will be a common idiom of OOP in Ada 9X. For

example, the following code will be inserted in package Port:

type Port-ptr is access Port'class;

function PortOpen(classPtr: PortPtr) return boolean;

Port.ptr is an access type with designated type Port'Class. This allow Port.ptr values

to designate objects of type Port, or any dcrikative of Port. The operation Open-Port is "

a class-wide operation in that it takes parameters of type Port-ptr, which designates the

class-wide type Port'Class. When a primitive peration of a tagged type is called with an

operand of the class-wide type, the operation to be executed is selected at run-time based

on the type tag of the operand. This run-time selection is called a dispatching operation.

Dispatching provides Ada programmers with a natural unit form of run-time polymorphism

within classes of related (derived) types. This variety of polymorphism is known as "inclusion

polymorphism".

Class-wide programming and type extension, in conjunction with generic units, pro-

vides many useful facilities. Generic units may be parameterized by user-defined classes,

allowing abstractions to be built around such classes. Consider the following example pro-

grams in conjunction with Port. The generic package Joystick has the following form:

with Port;
generic

type generic-Port(<>) is new port.port;

with function PortOpen(self: generic-Port) return boolean;

package Joystick is

3-17

In this example, type generic-Port will be matched by any type derived rom port.port.

This generic package could be instantiated with a specific derivative of port.port and other

actual parameters. The notation (<>) specifies that the actual generic-Port type may have

any number of discriminants or be a class-wide type. A generic unit may extend a tagged

type, adding components and operations. The extended types declared within such generic

units inherit all the properties of the original type and process all the new properties defined

by the generic units. Such generic units act as "mixin" classes and provide one aspect of

multiple inheritance (1).

Now all 00 programming mechanisms were provided. The only debate for Ada 9X is

multiple inheritance. Ada 9X supports multiple-inheritance via multiple with/use clauses,

via private extensions and record composition, via the use of generics and formal packages,

and via access discriminants (39). However, in Ada 9X, the linguistik multiple inheritance

mechanism is not provided because of the potential for distributed overhead caused by mul-

tiple inheritance. But this is a minor point:. multiple inheritance is a programming style, not

a universal tool, and object-oriented practice of the past ten years indicates that the critical

benefit of OOP, namely code reuse, is not substantially enhanced by multiple inheritance

(33).

3.3.7 Abstract Data Type' with Common Class. Using these different methods, it

was possible to achieve something of the effect of all the principal object-oriented mech-

anisms. Nonecof these methods except Ada 9X is acceptable for implementing a general

object-oriented language like C++ because they each support only a certain subset of the

required properties. For example, if a class is modelled by a task, so as to take advantage of

the dynamic binding and concurrency, it is not possible to use inheritance. If the ADT ap-

proach with derived types and subtypes is used, it does not permit the set of state variables

associated with an abstraction to be extended. Ada 9X is the best solution to implementing

a set of reusable components, since it provides support for the paradigm of object-oriented

3-18

programming (OOP) through powerful mechanisms for variant and class-wide programming

and child library units. However Ada 9X was not available at the time of this work.

Thus, this thesis design was implemented with Ada 83. The next solution was the ADT

approach. The final alternative was the ADT approach with a common class method. This,

method eliminates limitations such as type incompatibility with the simple ADT approach.

ADT with the common class method was the approach developed and used on the DRA-

GOON project (5). The main difference between AD? with common class and the simple

ADT approach is that the state of object is not represented by a single record but by a linked

list of records. Each node in the list stores the state variables added by its ancestors. Thus

the state of the objects in this thesis would be represented by a list with the 'node' storing

their attributes specific to 'their objects added to a 'node' storing their attributes belonging'

to their classes objects. Conceptually, all user-defined application classes except classes for

getting data from one machine to the other are descendants of commron-.object and may be

assigned to instance variables of this class. Therefore, logically, the first node of every such

state list corresponds to an instance of the class cornmon-.object. Figure 3.4 shows the full

version the Joystick and RS232 port class hierarchy.

In ADT with a cornmon-.object class approach, all objects in the component are repre-

sented by state lists whose first node is a record of type Commnon- Object. St ate, referenced by

an access variable of type Common- Object. Object. Instances of class Comnmon- Object. Object

are a special case in that their state is represented by a 'uninode' list containing a single

record of this type. The Ada record type used to generate this special first node in the state

list is defined following a package part of the predefined environment of every Ada library

used for impleme-nting components in this thesis.

package common-object is
type state;
type object is access state;
type state is record

offspring-no : natural :=0;
self :object;
multiple: object;

3-19

,i.

COMMON ADA ''
OBJE(',,' WRAPPER

JOYSTICK --- -- + PORT DISPOR

SUMANAGED DISTRIBUTED:

RS232 PORT RS232 PORT\

2/

/ .

PORT SOCKET

R 2D 1

Figure 3.4. Full Version of the Joystick and RS232 Port Class Hierarchy

heir : object;
end record;
function CREATE (offspring-no in natural 0)

return object;
end common-object;

package body common-object is
function CREATE (offspring-no: in natural 0)

return object is
OB : object;
begin

OB := new state;
OB.offspring-no := offspring-no;
OB.self := OB;
OB.multiple:= null;

3-20

OB.heir:= null;
return OB;

end;
end common-object;

The state lists corresponding to descendants of Common- Object. Object are composed

of an Common-_Object.State record followed by records holding the state variable introduced

by each of the classes in the inheritance chain. This is the basic strategy for overcoming the

incompatibility of the polymorphism features and Ada's strong typing mechanism. Since the

first node of every state list is of the type CommonObject.1State, all objects in the component

are referenced by access values of the same Ada type - Common-Object.Object.

The OFFSPRING-NO and MULTIPLE fields of the Common-Object.State are used to

handle multiple offspring and multiple inheritance situations, respectively. The field SELF,

on the other hand, simply points back to the record so that objects may access its own state.

The last field HEIR is the one that contains the 'links' or re'.;rences to other. nodes to build

a linked list for non-trivial objects. In the case of instances of the class Common-Object, the

HEIR field is left containing the value 'null' since the 'state 'of each objects is represented by

an instance of CommonCbject.State alone. However, for objects of descendent classes, this

field is used to point to the next node in the list. The HEIR field of the Common-_Object.State
/

is defined to be any type OBJECT for convenience, but in fact any access type would have

sufficed because it is impossible to predict at the time of its definition what the type of the

next node will be. This information is only available when an heir of Commo _Object is

transformed. This is the point at which the Ada typing rules need to be broken so that the

nodes representing newly defined heir classes can be 'linked' on to the list corresponding to

objects of the parent class. To make this HEIR field point to a record with a diffe ent type

to Common-_Object. Object, Ada's predefined generic function UNCIIECKED_ CONV RSION

must be used to change its apparent type.

The only problem with this approach is that it introduces unnecessary Common-Object

class and attributes for making each class linked. For example, all classes are inherited from

3-21

• "• ,•t"--- i , - / •

.t , • '"•;/ :. • /

Common-Object class, and have two additional attribu .,s - Offspring-no and Heir which are

not essential to them.

3-22

1 • .

""I //"I" "

IV. Detailed Design and Implementation

4.1 Introduction

One of the main goals of this thesis was that C++ should be readily translatable

into Ada and be able to interface with Ada for building reusable software components. This

chapter describes how the object model is translated into Ada in a fairly succinct and natural

style.

4.2 Detailed Design and Implementation of the Reusablc Port and UnmanagedRS232_Porl

Component

The abstract class PORT was translated into a package with the following specification

and body. The strategy for representing PORT objects in Ada was based on the approach

of an ADT with a C'ommonObject class. The PORT objects are generated by the member

function CREATE. The .'ORT class package provides the reference semantics and the as-

sociated facility for dynamically generating objects by making the exported type an access

type rather than a static type:

with common-object;
with unchecked..conversion;
package Port is

"type variable;
type state is access variable;
type variable is record

port-open : boolean; -flags if port is open
offspring-no : natural := 0;
HEIR : common object.object;

end record;
function common-view-of is new

unchecked-conversion (source =. port.state,
target =• common-object.object);

function port-view-of is new
unchecked-conversion (source = common.object.object,

target #- port.state);
function part-of (OB : in common.object.object) return state;

4-1

'K' - " ". -'. ~.. ... ' i

function create (offspring-no in natural := 0) return common-object.object;
function GetPortOpen (OB in common-object.object) return boolean;
function Open-Port (OB : in common-object.object) return boolean;
procedure ReadFromPort(

OB : in common-object.object;
Buffer : in out string;
num-chars-to-read : in integer;
count : out integer);

-other methods
exception: UNDER-FLOW;
end port;

Package body Port is

other variables and functions
function create (offspring-no : in natural := 0)

return common-object.object is
com-obj : common object.object;
port-obj : state;

begin

port-obj := new variable;
port obj.offspring-no := offspring-no;
port-obj.HEIR := null;
com-obj := common.-object.create(1);
com-obj.HEIR := common-view.of(port-obj);
return com-obj;

end;

As illustrated in I igure 4.1 and program examples, the state of Port object is rep-

resented by a linked list with two nodes, the first node of type CommonObject.State and

the second of type Port.variable, storing port attributes. The job of linking the two nodes

together transparentv is performed by the CREATE function using Ada's predefined func-

tion UNCHECKEDCONVERSION. To enable the HEIR field of the first node to point to a

record of type port.variables, the create function makes references of type port.state appear to
A

be of the expected type CommonObject. Object. For example, the port-view-of function in the

example program is an instantiation of the generic function UNCHECKED_ CONVERSION

4-2

V -\

converting access values of type port .st ate to the type Common-.Object. Therefore, all objects

in the components are of type Common-.Object. State referenced by an access variable of type

Co'mmon-Object. Object. Not only does this mechanism solve the problem of polymorphism,

but it also means that there are no typing obstacles to the incremental introduction of new

subclasses, since instances of these are also represented by state lists referenced by the ac-

cessed variable of type Common-.Object. Object. For example, if the HEIR field of the first

* node is 'null', the list represents an instance of class Common-Object; if not, then it must

correspond to a descendant of C'ommon-.Object, and therefore can be supplied as a parameter

to a method of a descendant class. In order for the 'methods' of the class to manipulate the

state variable stored in the corresponding state node, the Pa-rt..f function was introduced'.

It performs the inverse 'UNCHECKED-. CONVERSION' to the CREATE function. Given

a reference of type Common-.Object. Object, it returns a reference of the access type defined/

in its package. The breaking of the type rules is therefore performed transparently in a

disciplined manner through the two functions CREATE and PART-OF within each package.

Offspring-.No Port-Open

Selff Offspring-.No
Multiple Heir

Heir

Figure 4.1. List Structure Holding State of Port Objects

4.2.1 Inheritance. As mentioned previously, the inheritance mechanism supports

the reuse of an existing ADT as tl-e basis for the definition of the new ADT. This mech-

anism does not establish any connection between the old one and new one. In this thesis,

this inheritance is accomplished through the linked list, which has a common object access

type. In a linear inheritance hierarchy, the process of adding nodes onto the list is repeated

for each new addition to the hierarchy. As illustrated in Figure 4.2, the state of a Unman-

aged.RS232-Port object is stored as a linked list of three nodes. The Ada package into which

4-3

I I-

UnmanagedRS232-_Port is translated, however, is completely independent of the record types

used to generate the first two nodes in the list. For example, UnmanagedLRS232_Port would

be translated into a package of the form:

with port; with common-object;
package UnmanagediRS232_Port is

type variable;
type state is access variable;
type variable is record

portFD : osfiles.file.descriptor; - port file descriptor number
port-type : port.port commtype; - terminal, modem or flow control

offspring-no : natural := 0;
HEIR : common-object.object;

end record;

function part-of (0B : in common-object.object) return state;
function create-of (

port-num : in port.port-numbers;
speed : in port.port-speed-spec;
mode : in port.port-input-mode;
port.ctype: in port.port-comm-type;
offspring-no: in natural := 0)
return common-object.object;

... other functions

function Close-Port (GB : in common object.object) return boolean;
procedure Flush-Queue (GB : in common-object.object)

This structure is not affected in any way by that of the package Port corresponding

to its parent class. The only place in which reference is made to this package is in the

implementation of the Create and Part-Of. The Create and Part-Of functions would be

translated into a function of form:

package body UnmanagedRS232_Port is
function part-of (GB : in common-object.object) return state is

begin
return UnmanagedRS232_Port-view-of(port.part-of(OB). HEIR);

4-4

end;
function create-of (

port-num : in port.port-numbers;

offspring-no : in natural := 0) return common.object.object;
comrobject : common-object.object;
rs232port : UnmanagedRS232_Port.state; /
begin

rs232port new UnmanagedRS232_Port.variable;
rs232port.offspring-no :=offspring-no;
rs232port.HEIR := null;

rs232port.port-mode := mode;
rs232port.port-type := port-c-type;
com-object := port.create(l);
port.part-of(com-object). HEIR common-view-of(rs232port);
return com-object;

end Create-of;

The key benefit of this mechanism is in the structure of these two functions. Redefining

an abstraction from a pre-existing class is not at all influenced by the implementation of the

parent class.

4.2.2 Dynamic Binding. To illustrate the problems involved in implementing this

mechanism, consider the class UnmanagedRS232 Port. The most important feature of this

class, as far as dynamic binding is concerned, is that it re-implements some of the methods.

inherited from abstract class PORT. Consequently, when one of the redefined methods is

invoked through an instance variable of class PORT, the particular version of the method

which is executed depends on the dynamic type of the instance variable, that is, the type

of the object to which it is referring at the time of the call. The problem, therefore, is to

decide at run-time which of the Ada subprograms implementing the alternative versions of

the method should be executed. Moreover, the incremental development facilities of the 00

approach mean that the programmer may define further subclasses at any later stage; the

range of different versions that may be invoked does not remain fixed. There must be some

4-5

OffspringNo PortOpen

Self Offspring-No

Multiple Heir

Heir

PortFd
Port-Type

Other Attributes

Offspring-No
Heir

Figure 4.2. List Structure Holding State of Unmanaged.RS232_Port Objects

Ada code in the system that knows about all the different current versions of a method in

the system and is able to select the appropriate version at run-time. If this was embedded

in the body of the Ada packages into which classes are translated, however, the code would

have to be reproduced and recompiled each time a new version of a method was defined in a

subclass. The incremental development principle of the 00 approach would thus be largely

undermined.

Ada's features for defining the bodies of methods in physically separate subunits, how-

ever, provides an elegant mecha~pism for avoiding this problem. It permits the amount of

code that has to be updated to cater to the introduction of new method versions to be limited

to a single procedure body. Non, of the subprograms declared in the package specification

actually implements the correspor ding method directly, however. This job is, in fact, per-

formed by an additional set of me hods declared in a package SELF contained in the body

of the main package. The bodies of the visible subprograms declared in the specification of

4-6

_ _

the main package are contained in 'separate'units and use the subprograms defined in the

inner package SELF to implement the original method.

Package body Port is
package self is

function Open-Port (OB : in common-object.object) return boolean;
procedure ReadFromPort(

OB : in common-object.object;
Buffer : in out string;
num.chars-to.read : in integer;
count : out integer);

end self;

package body self is
function Open-Port (OB : in common object.object) return boolean is

begin
if port.part-of(OB) = null then
raise UNDER-FLOW;
else
return false;
end if;

end;

procedure ReadFrom-Port(
OB : in common-object.object;
Buffer : in out string;
num-chars-to-read : in integer;
count : out integer);
begin

raise UNDER-FLOW;
end;

end self;
function Open-Port (OB : in common object.object)

return boolean is separate;
procedure ReadFrom-Port(

OB : in common-object.object;
Buffer : in out string;
num-chars-to-read : in integer;
count : out integer) is separate;

* other functions

4-7

end port;

The subprograms declared in the inner package SELF contain the Ada image of the

code in the body of the corresponding methods. For example, the ReadFromPort method

declared in the inner package SELF contains the Ada image of the code in the body of the

PORT.

Since PORT is an HEIR only of COMMON..OBJECT and does not inherit any user-

defined method, when it is first implemented into Ada, there is only one version of each

of its methods known to the system. Until the subclass of PORT is added to the library,
N

therefore, the subprograms declared in the specification of the corresponding Ada package

are essentially redundant. The only action they perform is to call the corresponding method

contained in SELF. The body of the exported OpenPort subprogram, for example, has a

separate body of the form:

separate (Port)
function Open-Port (GB : in common-object.object) return boolean is

begin
return self.Open-Port(OB);

end;

At this stage, this subprogram makes no useful contribution to the implementation

of the method. This occurs when the programmer defines new versions of the method

in subclasses. The subclass of PORT that does this is the class Unmanaged-.RS232_Port

which redefines the Open-Port. When UnrmanagedRS232_Port is implemented into Ada,

the separate body of the subprogram PORT.OpenPort is replaced by the following:

with UnmanagedRS232_Port;
separate (Port)
function Opcr._Port (GB : in common.object.object) return boolean is

begin
if port.part-of(OB) = null then

return self.Open-Port(OB);
else

4-8

I N

\1

return UnmanagedRS232_Port.OpenPort(OB);
end;

When invoked, this function analyzes the form of the state list OB to see whether

the state list represents an instance oi PORT or its subclass UnmanagedRS232.Port. If

it represents the latter, it invokes the UnmanagedRS232-Port version, otherwise it invokes

the method in the package SELF. Essentially, therefore, this function forms a kind of 'shell'

around the true method implementations in order to select, at run-time, the appropriate one

for execution.

The great advantage of this approach is that all the modification and recompilation

needed to cater to the new version is limited to the 'separate' subprograms of the methods

concerned. This advantage come from the separation of the met hod selection subprogram;

that is, it is replaced as a subunit of the main package. Not even the body of the package, let

alone the Ada code for clients of the class, needs to be recompiled when methods redefining

subclasses are added to the system.

This technique is fine for distinguishing between the different versions of a method

that may be introduced in a linear inheritance chain, that is, when each class has only one

parent and one child class. However, if a parent has more than one child class, before using a

PartOf function to convert its type, it is essential to determine to which of the child classes

the next node in the list actually corresponds. Another field is needed in the nodes of the

state lists to indicate in which of the branches of the inheritance tree the class represented

by the subsequent node lies. The Offspring-no is the purpose of indicating which of the child

classes is the next node in the list. Together, the Heir and Offspring-no fields of state nodes

provide all the information needed by selection shells to determine which version of a method

to execute in response to a call. Suppose, for example, that the Distributed-RS232_Port was

translated into the package, which also redefined the Open-Port. Now the Offspring-no field

would be assigned natural number 1. In order to determine the appropriate implementation

4-9
75

/ - _ __ _

when OpenPort is invoked through an instance variable of class DistributedRS232_Port, the

body of the Open-Port function (selection shell) would be replaced by the following form:

with UnmanagedRS232_Port;
with DistributedRS232_Port;
separate (Port)
function Open-Port (OB : in common-object.object) return boolean is

begin
if port.part-of(OB) = null then

return self.Open-Port(OB);
else
case port.part of(O B).offspring-no is
when 0 =>

return UnmanagedRS232_Port.OpenPort (OB);
when 1

return DistributedRS232_Port.Open-Port (OB);
when others =*

raise UNDERFLOW;
end;

4.2.3 Clientship. The method of implementing classes in this thesis makes the

translation of client code very straightforward. All instance variables, of whatever class

type, are translated into Ada access variables of type Common Object.Object since the first

node of all state lists is of type CommonObject. Object. The translation of method invocations

employs the same principle used in the simple ADT approach. That is, the Ada access vari-

able corresponding to the called object is supplied as the first parameter of the subprogram

implementing the method. Thus a method 'ReadFrom.Port' call of UrtmanagedRS232_Port

would be translated into the following subprogram invocations:

Port. ReadFromPort
(part-of(OB).instantiatedRS232,part-oi(OB).JOY-noise-buffer, JOYDATASIZE,count);

where instantiatedLRS232is a instance variable,, ad JOY-noise-buffer, JOYDATASIZE

and count are variables for method invocation. The separated Port.ReadFromPort method

4-10

/

S.

would select the method UnmanagedaRS232_Port class at run-time. Now, instantiatedRS232 >

is an access variable of type Common-Object. Object. Similarly, the generation of objects by

invocation of CREATE method is simply translated as follows:

instantiatedRS232 common-object.object;

instantiatedRS232
unmanagedRS232_port.create-of(port-num, port-speed, port-mode, port-type)

4.3 Detailed Design and Implementation of Reusable a Joystick Component

As mentioned in the previous chapter, Joystick class has a degree of conculrrency. The

joystick would in certain mcdes operate independently of the computer. The task is the

unit of concurrency in Ada. The irr.plementation of active objects, with their concurrent

execution threads, must clearly be based on the use of tasks. Because a task is defined

in terms of actions rather than statements or instructions, even the execution of a single

program, such as a procedure which prints "Hello" on a terminal, can be viewed as a single,

implicit task whose thread of execution runs in parallel with the rest of the system. In

Ada, tasks allow the programmer to decompose a problem into several independent threads

of control. These techniques enable a programmer to model different activities in the real

world simultaneously. For example, an avionics system has altitude, radar, joystick, and a

graphics display, each of which is continu~lly monitored for valid reading. Additionally, the /

:raphics display is updated periodically to reflect position,. altitude, velocity, and termain.

iach of these subsystems can be modeled by a task. These tasks are independent activities.

The one problem in using a task to represent the thread of an object is in integrating

it) with the state list representation of objects used so far. However, this can be overcome

because Ada permits tasks generated from task types to be identified by access variables

that can be included in the appropriate record structure. In addition to the fields storing

4-11

V\

.•t/

the state variables of the objects, the state node of active objects has an additional field

holding a reference to a task. The active class Joystick can be translated into a package with

a specification of the form:

package Joystick is
type variable;
type state is access variable;
type thread-form;
type thread.ref is access thread-form;
type variable is record

RS_232port : common object.object;
JOY-mode : character;
JOY-out-mode : character;
JOY-buffer : Buffer-type;
JOY.noise-buffer : buffer-type;

joy..x, joy-y: integer;
joy-l, joy_2, joy_3 : integer;
offspring-no : natural := 0;
HEIR: common-object.object;
thread : thread-ref;

end record;
task type thread-form is

entry get-coordinates(OB : in common-object.object;
x-value: in out integer;
y-value: in out integer;
butl : in out integer;
but2: in out integer;
but3 : in out integer;
.flag : in out boolean);

end thread-form;
function Joystick-view-of is new

unchecked.conversion(source =€ common -object.object,
target =€ state);

procedure get-coordinates (
OB : in common-object.object;
x-value: in out integer;
y-value: in out integer;
butl :in out integer;
but2 : in out integer;

4//1

4-12

.. \I

but3 : in out integer;
flag in out boolean);

The procedure get-coordinates'corresponds to the task entry get-coordinates method

used to activate the thread of active clas:ses. Invocation of the get-coordinates method by

a client of an active object is thus translated into the invocation of the get-coordinates

procedure whose body. is of the form:

package body joystick is

procedure get-coordinates(OB : in common.object.object;
x-value: in out integer;
y-value: in out integer;
butl in out integer;
but2 : in out integer;
but3 in out integer;
flag : in out boolean) is

begin
joystick.part-of(OB).thread := new thread-form;
joystick.part-of(OB).thread.get-coordinates
(OB,x-value,y-value,butl,but2,but3,flag);

end get-coordinates;

end joystick;

The first action performed by this procedure is to instantiate the task type thread-forrn

and assign its access value to the thread field of the state node associated with Joystick. The

procedure then calls the geLtcoordinates method of the task to give it the reference to the state

list so that the thread may manipulate the variable of the objects. The calling of this entry

also serves to unblock the tasks so that it may begin execution of the code corresponding to

the body of the thread. The thread-form task type therefore has the following body:

package body joystick is

4-13

¾~I

-- i ' / -

task body thread-form is
begin
loop
accept get-coordinates(OB in common-object.object;

xa.tlue : in out integer;
y-value: in out integer;
butl in out integer;
but2 in out integer;
but3 in out integer;
flag: in out boolean) is

joystick.read joystick(OB,xsvalue,y-value,but 1,but2,but3,flag);
end get-coordinates;
end loop;

end thread-form;

end joystick;

Once the geLcoordinates procedure has generated an instance of task type thread-form

and provided it with a reference to the object's state list by calling its get-coordinates entry,

the task will execute concurrently with other threads and method invocations, as required.

Moreover, as it is included in the state node of the corresponding objects, it is intimately

associated with the corresponding object state for the duration of the program. For example,

consider simplified versions of the flight simulator task units "request-task-type" which may

trigger a long input operation task "get-coordinates". Each "request-task-type" task calls

task "get-coordinates" to determine the current position of a moving object, based on the

X,Y-coordinates of the corresponding joystick. These tasks communicate by sending each

other not only synchronization information, but data as well. The message passing concept

in Ada is called the rendezvous. After the rendezvous is complete, the two tasks continue

independently.

4-14

4.4 Detailed Design and Implementation of the Ada Wrapper A-

The Adawrapper class was intended as a wrapper class in which C++ class members

of data and function were interfaced with Ada code. Basically, two approaches were taken;

one through the C-linkage (e.g., extern "C" { }, which says that everything within the

scope of the brace-surrounded block is compiled by a C compiler), and the other through

the type-safe linkage and name encoding techniques. This section describes the problems

involved in generating names for overloaded functions in C++ and in linking to Ada and

C++ programs. It also discusses how problems referred to in this thesis were solved.

The type-safe linkage and name encoding technique (C++-linkage) discussed in this

thesis was based on the 2.0 release of C++. C++, like a Ada, allows overloading of function

names; two functions may have the same name provided their argument types are different,

while C does not provide function name overloading. C has a simple naming convention for

external symbols, which includes global variable and function names. The C compiler just

prepends an rinderscore character '-' to external symbols. This simple scheme clearly isn't

sufficient to cope with overload functions. However, in C++, every function name is encoded

by appending its signature.

The C++ function name encoding scheme was originally designed prinmarily to allow

the function and class names to be reliably ex'racted from encoded class member names.

The basic approach is to append a function's signature to the function nairte. According to 4 ?

the AT&T C++ Langaage System Selected Readings (4), the futction name encoding scheme A

under C++ version 2.0 is defined as shown in tablc 4.4.

A global function name is encoded by appending _F followed by the signature so that,

for example, Read _Packet(int, char, float) becomes RI ad-Pack(LFicr W ithin Ada, this

function should be called through the encoded name 'ReadPacket. _Ficf'. Thus when the V
port was being set up for "raw" input allowing the port to receive inp)uts present in the

read queue (regardless of whether the tty device is done sending a full packet or not), the

tty.settty-state Ada function was used. This function was providcd by the VAI)S 'verdixlib'

"/"A1-15

I........ . .S- "-..- ___"_
". ,,,.

Types Encoded Modifiers Encoded
%oid v unsigned U
char c const C
short s volatile V
int i signed S
long I pointer * P
float f reference &_R_"
double d array [1O]AIO_
long double r function () F

ptr to member S::*MIS

Table 4.1. The C++ Type-safe Linkage and Name Encoding Techniques

library. However, the function didn't set up the port correctly. Additional parameters were

set up and blocked the terminal. For the safety of the terminal set, a C++ function was

written to set the port up for "raw" rather than Ada function. Then the C++ function

was called within Ada. To bind with C++, the parallel data types between Ada and C++

were created. Creation of parallel data types was the same as C, which meant that C and

C++ have basically the same data representations. Then the C++ function name encoding

scheme was used to access that C++ function within Ada.

with system;

Package UnmanagedRS232_Port is

procedure c-port-port(portFD-num in system.addres7,,
ttyport : in system.address;
port-speed :ii system.address; .,
P-mode : in system.address);

pragm.- INTERFACE (C, c-port-open);
pragma INTERFACE.NAME (c-port-open, & "c-port-open__FPiPcN2");

Package Body Unmanaged _RS232_Port is .

portFDnnum : integer;
ttyport string(1.. 11);
P-mode: integer;

4-16

S • i : • =- . .. "• '-. ...

ttyport(1..8) := "/dev/tty";
ttyport(11) := ascii.nul;
P-mode := port.port-input mode'pos(part~of(OB).port -mode);
cportopen (por FD-num'address, ttyport'address,
part-of(OB).port speed'address,P mode'address);

end UnmanagedRS232_Port

Corresponding C++ program
c-port-port(int *FD, char path [], int *port-speed, int *P-mode)
{

Another way of accessing C++ global functions within Ada was to use the C-linkage

instead of the C++-linkage. The extern "C" statement means that everything within the

scope of the brace-surrounded block is compiled by a C compiler. With this approach, the

function was accesses through pragma INTERFACE within Ada. All procedures to access

C++ functions within Ada are basically the same as that of the C++-linkage except for the

encoded function name.

pragma INTERFACE (C, c.port-open);
pragma INTERFACE-NAME (c-port.open, CSUBPPREFIX & "c-port-open");

Corresponding C++ program
extern "C" c.port-port(int *FD, char path [i, nt *port-speed, int *P-mode)

}

Stroustrup suggested the linkage from C++ to another language as follows: "I conjec-

ture that in most cases linkage from C++ to another language is best done simply by using a

common and fairly simple convention such as 'C-linkage' plus some standard library routines

and/or rules for argument passing, format conversion, etc., to avoid building knowledge of

non-standard calling conventions into C++ compilers" (4:6-9). As he suggested, the use

4-17

/ -

- .- / .I, , '

of 'C-linkage' instead of C++-linkage made interfacing with Ada simpler for unique name

global C++ functions.

However, there are several problems with 'C-linkage' for overloading functions and

class members. The first is a safety problem with function overloading. 'C-linkage' basically

can not overload functions, since two functions with the same function name and different

signatures can cause serious side effects. The second, and more serious, problem with 'C-

linkage' was related to a class and its members. A linkage specification for classes applied

to only non-member functions and objects declared within it. There was no way of using

'C-linkage' for C++ classes and their members, which means that every linkage specification

for classes and their members should use C++ naming encoding techniques.

According to the C++ name encoding technique, names of classes was encoded as the

length of the name followed by the name itself to avoid terminators. For example, the member

function of joystick class, SetYNormalize(int&), becomes SetYNormalize_8JoystickFRi.

The procedure of binding with this class member function was basically the same as that of

C++ global functions. The details within Ada are as follows:

procedure SetYNormalize (N1 : in integer);

pragma INTERFACE (C,SetYNormalize); :_
pragma INTERFACENAME(SetYNormalize,"SeL,_YNormalize_8JoystickFRi");

The main problem with this approach is that the instances of C++ classes are not

exported from C++ to Ada. That is, Ada could not instantiate the C++ class from within

Ada because class definition in C++ does not cause any memory to be allocated. Memory

is allocated for a class with the definition of each class object.

At first, an intermediate C routine which transfers C++ class structure to Ada was

tried. The problem was the same as with Ada's case. Neither Ada nor C can export C++

class data structures to create instances of C++ classes. One possible way uf exploiting a

class library from Ada was to use pointers to class members and itself, which was the first

approach taken. It seemed possible because we were able to create p.'rallel data structures

4-18

. -.• ' /• . - -

corresponding to pointers of class data members and declare subprograms corresponding to

class function members according to the C++ naming encoding rules. In C++, a pointer

to an object of a class points to the first byte of that region of memory. The C++ compiler

turns a call of a member function into an "ordinary" function call with an extra argument;

that extra argument is a pointer to the object for which the member function is called (4:5-2).

For example, a simple class Joystick:

class Joystick {
int x,y,butl,but2,but3;
void read-joystick(int x,int yint butl, int but2, int but3);

A call of the member function Joystick::read.joystick:

.Joystick *ptrjoystick; -pointer to Joystick class
ptrjoystick•'read.joystick(x,y,but 1,but2,but3);

is transformed by the compiler into an "ordinary function call":

read-joystickF8Joystick(ptrjoystick,x,y,but 1 ,but2,but3);

From the above ordinary function call, Ada may be able to access individual C++

class members through another intermediate C++ global function which just creates an

instance of a class. However, we were not able to exploit class members within Ada from
/

the C++ class library. Later, we found out there was no pointer to a class member under ,

C++ compiler version 2.0

Another way of exploiting the C++ classes library was to build a C++ main function

which instantiates the classes and invokes the member functions. Then Ada can access the

C++ main function directly through Ada pragma INTERFACE. Within C++ main, object

attributes (parameters) are passed to the Ada routine by calling Ada subprograms. For

example, the Ada main program calls the C++ main program just like calling the C++

4-19

global functions. And the C++ main program passes object data members as parameters

by invoking the Ada subprogram within the Ada main program.

procedure joyadatest is
procedure joyt;
pragma interface (C, joyt);
pragma interface-name (joyt,"joyFv");
procedure getdata(x-val in integer;

y.val: in integer;
but-l in integer;
but2: in integer;
but_3 in integer;
flag : in integer);

pragma EXTERNAL (C, getdata);
pragma EXTERNAL-NAME (getdata, CSUBP.PREFIX & "givedataFiN51");
procedure getdata(x-val : in integer;

y-val: in integer;
butl : in integer
but_2 : in integer;
but_3 : in integer;
flag : in integer) is

begin
-perform something

end getdata;
begin

joyt;
end;

C++ program
extern "C"
{ '

int x-val = 0;
other declarations

extern givedata (int, int, int, int, int, int);
Joystick *ptr;
joy()
{

Joystick jstick(Port::portfour);
ptr = &jstick;
ptr=• Set _YNormalize(TRUE);
ptr=,Set-YResolution(I 0);

4-20

while ((!(but.1)))
{

flag = jstick.ReadJoystick(&x.val, &y-val, &butil, &but_2, &but_3);
givedata(x.val,ysval,but_ ,but_2,but_3,flag);

}

For the Adawrapper class, we first tried to replace DISTPORT class with an Ada

routine, because its only function is to create a PORT READER class object and call the read

method. However, we couldn't find the way of directly exploiting a class library within Ada.

The Adawrapper was needed to access C++ class DISTPORT. Actually the DISTPORT was

the main program that instantiates: class 'Port Reader', then runs on a remote machine. The

DISTPORT was invoked by passin• the parameters, which are the command line arguments

in argc and argv.

with system; use system;
with language; use language;
with commandline; use command-line;
procedure distportada is

procedure distport(argc in ,ystem.address;
argv in system.address);

pragma interface (C, distport)
pragma interface-name (distpo t,CSUBPPREFIX & "main");
begin

distport(ar:gc'address,argv'address);
end;

Appendix B includes some programs to help in the understanding of the example pro-

gram code explained in this chapter. All programs included in Appendix B were implemented

for developing the reusable joystick component for a flight simulator application domain.

4-21

V. Summary and Conclusions

This chapter summarizes the research discussed in this thesis and also presents con-

clusions.

5.1 Summary

The objective of this thesis was to develop a set of reusable software components for

investigating and for demonstrating Ada's applicability as an implementation language for

a reusable graphical software component.

A set of components, Reusable Joystick and RS232-Port, were developed for a flight

simulator. The 00 approach was applied to the implementation of these components using

the Ada programming language associated with C++ components.

The development of this thesis started with an analysis of the flight simulator domain.

The main purpose of the analysis phase was to identify potential reusable software compo-

nents. This came from a domain analysis that led to the identification of common objects,

operations, and structures. A class was a set of objects that share a common. structure and

common behavior. Each object class was a candidate for a reusable component for the do-

main. This thesis identified low level inputs (Joystick and RS232 port classes) as a reusable

components implementation.

The next step was to analyze the joystick and the RS232 port classes and their re-

lationship among their class members in more detail. As a part of this, Ada binding to

C++/C was analyzed. For a complete Ada binding to a C++/C library and existing codes,

the following steps are necessary.

"* Create parallel d~ata types.

"* Interface to external symbols (routine and data).

"* Link to external libraries.

5-1

Whenever access to routines or variables declared in the C++/C language is required, any

Ada variables used in conjunction with the subroutines or variables are compatible with the

C++/C data representation. Once these parallel types have been established, the next step

is to gain access to external routines and data provided in the interface target language. This

is accomplished in a two stage procedure: first, equivalent Ada subprogram specifications

are written, and second, the linkage to the external routine and data is declared. The

first step is a simple mapping of external routine and data names and parameters into an

Ada subprogram specification. The second step is accomplished through use of the pragma

INTERFACE and pragma INTERFA CE-NA ME. Linking the symbols built in Ada with the

external C++/C symbols is done by the Ada linker.

Then design decisions were made and details were added to the model to describe and

optimize the implementation. The main goal in designing and implementing each component

was ease of use and reusability (extensibility and maintainability were derived from designing

for reusability). The design of such reusable software components resulted in a design which

incorporates an interface and an implementation, resulting in the design of an' qbstraction..

Components that incorporate such characteristics are usually referred to as objects and are

said to be object-oriented. OOD of reusable Joystick and RS232 Port components was used.

This model focused on reusability in C++. Redesign was required for adapting to the Ada

culture. The "Ada-.wrapper" for wrapping C++ routines was added to surround the C++

class members and allow them, to be gradually repl aced later.

Several methods for building a well-engineered reusable component were considered.

Each alternative achieves this goal of building reusable components by demonstrating some

effect of Object-Oriented (00) mechanisms through Ada language features.

The most direct representation of an object is a state encapsulating package exporting

a set of operations which can be used to access and update the object state. With this

Abstract State Machine (ASM) approach, the user is provided with a high-level interface to

the components. All access is through the operations provided in the interface. A generic

state-encapsulating package with this interface defines an object template from which mul-

5-2

tiple structurally identical instances can be generated. However, generic packages are static

entities that can only be instantiated at compile time and thus do not support the con-

cept of dynamically instantiatable objects identified by references, let alone support for the

accompanying mechanisms of inheritance, polymorphism and dynamic binding.

The second method is to represent objects as tasks. This method can support dynam-

ically instantiatable classes and the notion of concurrency. It can also be used to realize a

form of dynamic binding. However, the problem with this method is that classes emulated

by task types in Ada cannot provide support for inheritance. Another problem is that they

cannot be library units.

In addition to the above two approaches, the notion of Abstract Data Type (ADT)

can be used for representing objects and classes. In this method, an object is defined by

a package exporting an ADT. This approach differs from the ASM approach in that the

interface consists of both the predefined set of operations and the data structure itself,

but the state of the data is not captured. The package exporting the type and associated

methods does not itself represent an object but rather variables of the exported data type,

and the package defining the ADT corresponds more to a class, therefore, than to an object.

The reference semantics and the dynamically instantiated objects are provided by making

the exported type an access type rather than a static type. The main advantage ef this

method is that it provides limited support for two important mechanisms associated with

classes/object'i, inheritance and polymorphism. However, it introduces limitations Such a-

type incompatibility by deriving from the parent types, narrowing their applicability by

subtyping, recompilation of the original abstraction by breaking the original abstraction,

and complicated generic parameters.

Another method for representing classes and objects is to use Ada generic units to

provide components which are tailorable to user-defined types. It provides flexibility while

simplifying use. Types and operations on the types are defined, and the types can then

be used to instantiate the generics, and the operations will get pulled along. The major

5-3

advantage of this approach is that it incorporates strong typing and is flexible. However, the

user would need to supply a large number of generic parameters.

Ada 9X was considered as the best solution since it provides support for the paradigm

of object-oriented programming (OOP) through powerful mechanisms for variant and class-

wide programming and child library units. All limitations with the Ada 83 ADT approach

can be addressed with Ada 9X. With Ada 9X, the programmer can use tagged type extension

and subprogram dispatch to simplify the system. Tagged types offer Ada programmers a

mechanism for single inheritance. For a type T, the class-wide type T'Class was introduced.

The set of values of T'Class is the union of the sets of values of T and all of its derivatives.

The type tag, associated with each value of a tagged class-wide type, is the basis for adding

run-time polymorphism in Ada 9X. However, an Ada. 9X compiler was not available.

The last alternative considered was an ADT with a common class approach. The

main difference between this approach and the simple ADT approach is that the state of

the object is not represented by a single record but by a linked li.t of records. Each node

in the list stores the state variables added by its ancestors. In this approach, all objects

in the component are represented by state lists whose first node is a record of type Comn-

monObject.State, referenced by an access variable of type CommronObject. Object. These

state lists corresponding to descendants of CommonObject. Object are composed of a Com-

mon-_Object.State record followed by records holding the state variable introduced by each

of the classes in the inheritance chain. Since the first node of every tate list is of the type

Common-_Object.State, all objects in the component are referenced b•, access values of the

same Ada type "Common-_Object.Object". This was the basic stratey for overcoming the

incompatibility of the polymorphism, inheritance mechanism and dynamic binding without

introducing type incompatibility and recompilation while preserving Ida's strong typing

mechanism. The only problem with this approach is that it introduce• unnecessary Com-

monObject classes and attributes for making each class link. For example, all classes are

inherited from the Common-Object class, and have two additional attributes - Offspring-no

and Heir which are not essential to them.

5-4

-Kb.

/

/ ,

//

This ADT with common class approach was selected for implementation. The inheri-

tance and polymorphism mechanisms were accomplished through the linked list which has a

common object access type. All objects in the system are of type Common- Object.State ref-

erenced by an access variable of type CommonObject. Object. Not only does this mechanism

solve the problem of polymorphism, but it also means that there are no typing obstacles to

the incremental introduction of new subclasses, since instances of these are also represented

by state lists referenced by accessed variables of type CommonObject.Object.

For example, if the HEIR field of the first node is 'null*, the fist represents an instance

of class CommonObject; if not, then it corresponds to a descendant of Common-Object and

therefore can be supplied as a parameter to a meth(,l of a descendant class.

In a linear inheritance hierarchy, the process of adding nodes to the list is repeated for

each new addition to tl e hierarchy. As illustrated in the previous chapter, the state of an

UnmanageddRS232_Port object is stored as a linked list of three nodes. The Ada package

into which UnmanagedRS232-Port is translated, however, is completely independent of the

record types used to generate the first two nodes in the list. The UnmanagedRS232_Port

structure is not affected in any way by that of the package Port corresponding to its parent

class. The only place in which reference is made t, this package is in the implementation of

the Create and PartOil The key benefit of this mechanism is in the structure of these two

functions.

Ada's features for defining the bodies of methods in physically separate subunits pro-

vides an elegant mechanism of dynamic binding. It permits the amount of code that has to

be updated to cater to the introduction of new method versions to be limited to a single

procedure body. None of the subprograms declared in the package specification actually

implements the corresponding method directly, however. This job is, in fact, performed by

an additional set of methods declared in a package SELF contained in the body of the main

package. The bodies of the visible subprograms declared in the specification of the main

package are contained in 'separate'units and use the subprograms defined in inner package

SELF to implement the original method. The great advantage of this approach is that all the

5-5

/
'. .//

modification and recompilation needed to cater to the new version is limited to the 'separate'

subprograms of the methods concerned.

The Adawrapper class was intended as a wrapper class, in which C++ class members

of data and function were interfaced with Ada code. Basically, two approaches were taken;

one through the C-linkage (e.g., extern "C" { } which says that everything within the scope

of the brace-surrounded block is compiled by a C compiler), and the other through the

type-safe linkage and name encoding techniques - C++-Linkage.

One way of accessing C+-;- global functions within Ada was to use the C-linkage instead

of the C++-linkage. The extern "C" statement says that everything within the scope of the

brace-snrrounded block is compiled by a C compiler. With this approach, the function was

accessed through pragma INTERFACE within Ada. All procedures to access C++ functions

within Ada are basically the same as that of the C++-linkage except for encoded functions.

The use of 'C-linkage' made Ada interfacing with C++ simple for uniquely named global

C++ functions.

However, there are several problems with 'C-linkage' for overloading functions and

class members. The first is a safety problem with function overloading. 'C-linkage' basically

cannot overload functions, since two functions with the same function name and different

signatures can cause serious side effects. The second, and more serious, problem with 'C-

linkage' was related to a class and its members. A linkage specification for classes applied

to only non-member functions and objects declared within it. There was no way of using

S'C-linkage' for C++ classes and their members, which means that every linkage specification

for classes and their members should use C++ n-..Ang encoding techniques.

Another way of accessing C++ functions was to use "C++ linkage". A global func-

tion name is encoded by appending _F followed by the signature so that, for example,

ReadPacket(int, char, float) becomes ReadPackeL._Ficf since, within Ada, this function

should be called the encoded name 'ReadPacketFicf'. Names of classes are encoded

as the length of the name followed by the name itself to avoid terminators. For exam-

5-6

pie, the member function of the joystick class, Joystick::Set_Y Normalize(int&) becomes

SetYNormalize_8JoystickFRi. The procedure of binding with this class member function

was basically the same as that of C++ global functions.

The main problem with using C++ linkage was that the instances of C++ classes are

.not exported from C++ to Ada. That is, Ada could not instantiate the C++ class from

within Ada. Neither Ada nor C export C++ class data structures to create instances of

C++ classes. One way of exploiting C++ class libraries was to build a C++ main function

which instantiated the classes; then Ada accessed the C++ main function directly through

Ada pragma INTERFACE.

5.2 Conclusions

One of the objectives of this thesis was to build a set of reusable flight simulator

components in Ada using an 00 approach. I wanted to end up with joystick and RS232 port

components that were reusable, maintainable and extensible. Object-oriented techniques

with Ada promised to provide a way to achieve these goals. I believe that these goals have

been accomplished.

The use of Ada, however, couldn't itself guarantee that a component would be readily

reusable. There were a number of important design guidelires that can greatly enhance the

reusability of components. These guidelines relate to the design and structure of reusable

components which were provided by the 00 approach.

However, there were limitations with Ada 83 such as type incompatibility and recom-

pilation, or introduction of attributes which are not essential to an object. Ada 9X addressed

these limitations.

Another objective of this thesis was to build a set of reusable Ada software components

associated with C++ routines. I wanted to end up with the advanced Ada language features

that could access the C++ library. However, it was not possible to export members of classes

and objects from class libraries within Ada. It was possible to access C++ global functions

5-7

and user-(defineid data types, but not user-defined classes. However, one feasible way was to

use "ordinary' function calls with an extra argument; that extra argument is a pointer to

the object for which the class member function is called.

It is currently practical to use Ada for graphics applications if graphics libraries are

written in C rather than H++. However, it is not practical to use Ada for C++ class graphics

libraries.

5.3 Rrcomnrnendations

There are many different areas of the design and impletientation techniques to btild

reusable graphics software components that could be extended and improved. This thesis

work does not provide the best solution to the question "how to dcvelop rusablc softwarc

cornponrnts in Ada which arc associated with a C++ class library ?", that is, it is not suitable

for a "cookbook" approach. This thesis has addressed sev(ral ways of building a reusable

graphics software component in Ada associated with C++ routines using an 00 approach.

As Ada 9X translators becomes available, this work can be implemented much more

cleanly and directly in Ada 9X. To best address reusability with respect to interfacing with

C++, Ada 9X implementations should add interface facilities which enable the Ada 9X

translator to choose a storage layout for objects of the named types and user-defineu classes

in C++ to match the representation that the C++ compiler uses. in addition, it must

be possible for an Ada object of any of the types, including storage layout for objects of

user-defined classes in C++, to be passed as a paramneter to a C++ function with the

corresponding formal parameter.

5-8

4.

Appendix A. Joystick and RS232Port Design

Static Time Flight Simulator Window Manager

Translator Uwer Aircraft

TGrid Text Window

World Window Dynamic ObjectManager

Figure A.1. Flight Simulator Composition

A-i

COMMON ADA
OBJECT WRAPPER

JOYSTICK PORT DISPORT

UMANAGED DISTRIBUTED
RS232 PORT RS232 1`ORT

PORT SOCKETREADER_

Figure A.2. Joystick and RS232 Port Class Hierarchy

A-2

COMMON-OBJECT

Offspring-no
Self
Multiple
Heir

B Create-Of B

D D

PORT JOYSTICK

Figure A.3. CommonObject Class

A-3

common
0Object

JOYSTICK
JOY-Port Joy..3

Port JOY-mode Bytes...still-needed
JOY..outmo~de Noisy-packets
JOY-buffer X-normalize-value

-----I JOY..noise..buffer Y-normalize-value
Bottoni -eolto
Botton2 X..resolution
Botton3Yeolto
X-value Center-.high
YLvalue Center-low

/ 00 JoyX Joy-center

Managed Unmanaged Joy-Y Joy-Ximax
RS3 otR22Port Joy... Joy-.Y...rax

Joy-2 Suspened
Offspring-.no First read-attempt

I Heir Thread

Cr. ...eof Part-of
I.--Read-Packet Joystick

L-------L----- -Init-Joystick Read-Joystick
------- - -Joystick Set-.X..Resolut ion

--- Set-Joystick-Mode Set-Y-.Resolution
-Set-Joystick-Output-Mode

-Suspend-Mode SL..omlz
L.- Resume-Input Set-Y-Normalize

Figure A.4. Joystick Class

A-4

PORT

Port-Open

Unmaae Offspring-no DUnmanaged Heir
RS232 Hi

Port GetPortOpen
Create-Of ?
Part-Of Common
ReadFromPort Object
WriteromPort

D Open-Port
B Close-Port
B Flash-Queue

Figure A.5. Port Class

A-5

UNMANAGEDRS232_PORT

PortFD TTY

PortTiype Port-Speed

Port-Number Port-Mode
Offspring-no Heir

S~D t

Create-Of

Part-Of

ReadFromPort

WriteToPort PORT

Open-Port

Close-Port

Flash-Queue

Figure A.6. UnmanagedRS232_Port Class

A-6

:"•. . ",// - . _ . •-." "• . _:-_: •

-, • -•, • - : - : -:: _,, _ . .7 . .
I'/•. J= - - ' • i ".

ADAWRAPPER

DISTPORT

This is actually a Ada program that
calls a C++ main program
The C++ program instantiates
the classes and runs the
class members.
The only thing Ada Wrapper
program does is call the

C++ main program.

Figure A.7. A.1awrapper

A-7

Appendix B. Example Source Program List
\\eeeesee***eeeee.eseeeeeeeeeeeeeseeeeeeeeoeseeeseeese$eeeeeeeeeeeeeseeee4ee

W\File name C.-Port-Opeu.cc *

\\Plrpose : It reset the variables in the termio structure to represent*
the way in which you wish the port to behave. '.in open thee
port. •

\\eseeeesoeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeee*eseo~eoeseseeees seeseeeseeese

extern "C" {
*include <sys/ternio.h>
int ioctl (int, int, chars);
)
*include <jtdio.h>
$include <fcntl.h>
#include <string.h>
extern "C" void c-port.open(int *FD, char path[] ,int *port.speed, int #P-mode)
{

int portFD;
struct teruio tty;

if ((port.FD - open(path, ORDWR I ONDELA¥)) -. -1)
{
fprintf(stderr,"Cannot open port .n");
fprintf(stderr,"Most likely cause is that permissions file.\n");

)
else

f
ioctl(port.FD, TCGETA, (char e) ktty);
/* low reset the variables in the termio structure to represent the way

in which you wish the port to behave C/
/.

• Set the port up for:
$ Hang up on last close
* eight bits
s local line
* enable receiver
* enable signals
C user specified baud rate
C/

if (eP-mode - 0) /0 input mode is raw e/

fprintf(stderr,ORaw mode\n");
/e These flags set up the port for "raw" input. This allows us to

grab whatever input is present in the read queue regardless of
whether the device is done sendinf. i fual packet or not.*/

tty.c.cflag = HUPCL I CS8 I CLOCIL I CREAD i *port.speed;
tty.c.lflag - 0;
tty.c.iflag - IGNBI;
tty.c.oflag - 0;
tty.c.cc[VNII] - 0;
tty.c.cc[VTINE] - 0;
}

else
{

/e This sets up the port for "canonical" input. The read queue will not
make a packet available to the read routine until a <cr><lf> is
received. e/
fprintf(stderr,"Port -mode is canonical\nu);

ti .c-cflag - RUPCL I CS8 I CREED I eport-speed I CLOCAL;
tty.c.lflag - ISIG ICAIOI;

tty.c.iflag IGBRX;
I

/e low set up the port using the TCSETA call to ioctl. This resets the

port and flushes the output queue '/

B-I

Jp

-- • ,

ioctl(portFD, TCSETAF, (chax e) &tty);
}

eFD * portFD;
}

-- e.eeeJ~eeee•¢e~eee¢eeveeeeeeeveeve¢eeeeee***eeeeeeveeeeeeeeeeeee¢•eee~ee*eeee**

-- CLASS Port

-- PURPOSE: This is an abstract class used to implement RS232 ports.
-- FILENAME: port.a

-- METHODS: create -- Constructor, common.view-of, port-vieu-of,part.of,
-- common.viev.of, port.viev-of.
-- Read, Vrite.ToPort, Open-Port, Close-Port, Flus'..Queue
-- are all virtual functions to he implemented by lower level
-- classes.

-- GetPort.Open - returns the only attribute of Port.
-- DESIGN DECISIONS: This standardizes the protocol of the Port classes.

with common-object;
with unchecked.conversion;
package Port is

type port-numbers is (port-one, port-two, port-three, port-four,
port-five, port-six, port.sevan, port.eight);

type port.speed.spec is (b19200, bWCOO, b1200, b300);
type port-input.mode is (Uaw, canonical);
type port.comtype is (terminal, modem, flov-control);
type variable;
type state is access variable;
type variable is record

port.open : boolean; -- flags if po7t is open
offspring.no : natural :- 0;
heir : comon-object.object;

end record;

--- This function is an instantiation of the generic
--- function UNCHECKED-CONVERSION converting the type rommonObject
--- to access values of type.
function co-mon.view-of is new

unchecked-conversion (source -> port.state,
target *) common.object.object);

--- This function is an instantiation of the generic
--- function UUCHECKEDCONVERSION converting access values of type
--- port.state to the type Comnon.Object.
function port.view-of is new

unchecked.conversion (source -> common..object.object,
target 0> port.state);

--- It performs the inverse UNCHECKED-CONVERSION to the CREATE
--- function. Given a reference of type CommonObject.Object,
--- it returns a referene of the access type defined its package.
function part-of (OB : in comon.object.object) return state;

--- The purpose of this function is linking the two nodes together
--- transparently. It enable the heir field of the first node to
--- point to a record of the other node, And make then refereice
--- of type Cosson.Object.Object.
function Create (offspring-no : in natural :- 0)

return coumon-object.object;

--- This function returns the only attribute of Port.
function Get.PortOpen (OB : in comon.object.object)

return boolean;

B-2

function OpenPort (OB in co--on.object.object) return boolean;

function Close-Port (OB in common-object.object) return boolean;

procedure Flush-Queue (OB : in com-on.object.object)

procedure DeleteUnmanagedRS232_Port (OB in corioL.object.object)

procedure Read.FromPort(OB in co--on-object.object;
Buffer in out string;
nun_charsto.read in integer;
count out integer);

procedure Write.To.Port (OB in comaon.object.object;
buffer in out character;

nun.chars-tQ-.rite in integer);

UNDER-FLOW exception;
end port;

package body Port is
package self is

function Open-Port (OB in common-object.object)
return boolean;

function ClosoPort (OB : in common-object.object)
return boolean;

procedure Flr..h_.Queue (OB : in common-object.object);
procndure DeleteUnmaragedRS232_Port (OB in common-object.object);
procedure Read.FromPort(GB in commn.-object.object;

Buffer in out string;
n--,-chars.to.read in integer;
count out integer);

procedure VriteToOort(OG in common.object.object;
buffer in out character;
num..hars..to.rite in integer); end self;

package body self is
function Open-Port (OB : in common-object.object)

return boolean is
begin

if port.part.of(OB) * null then
raise UNDER.FLOW;

else
return false;

end if;
end;

function Close-Port (OB in common.object.object)
return boolean is

begin
if port.part.of(OB) - null then

raise UNDER-FLOV;
else

return false;
end if;

end;
procedure Flush.Queue (OR : in common-object.object) is

begin
raise UNDER-FLOV;

end;
procedure Delete.Unmanaged.RS232.Port (OB in common.object.object) is

begin
raise UNDER-FLOW;

end;

B-3

procedure ReadFromP in common-object.object;
far in out string;

i-m•chars-to-read in integer;
count out integer) is

begin
raise UNDER_FLOU;

end;
proceduze WriteToPort(O: in comenneaobject.object;

buffer in out character;
numchars. to-write in integer) is

begin
raice UWDERFILOV;

end;
end self;

function part.of (OB : in common-object. object) return state is
begin

return port.view.of(OB.heir);
end;

function create (offspring-no : in natural := 0)
return cosmon-object.object is

com.obj common-object.object;
port-obj state;
begin

port.obj :- new variable;
port.obj offspring.no :- offspring-no;
port.obj.heir :- null;
com.obj :- comon.-object.create(l);
con-obj.heir :- common.view.of(port-obj);
return com.obj;

end;
function Get.PortOpen (OB : in common.objec .objec.)

return boolean is
temOB : state;
begin

teOB : new vari•.ble;
tem.OB : part.of(OB);
return temCB.port.open;

end Goet.Port.Open;
function OpnPort (OB : in co--on.object.object)

return boolean is separate;
function Close.Port (OB : in common-object.object)

return boolean is separate;
procedure Flush-Queue (OB : in common-object.object)

is separate;
procedure Delete .Unmanaged-RS232-Port (OB in common-object.object)

is separate;
procedure ReadFromPort(OB in cuuon.object.object;

Buffer in out string;
nu..chars-to.read in integer;
count out integer)
is separate;

procedure VriteToPort(OB in common.object.object;
buffer in ont character;
nunchars.to-write in Integer)
is separdte;

end Port;

see e*eeeeoeeeeeeeeeeeeeeee~eeee**eeee~e ee****eeeeeee~eee~eee*ee~ee*e

F5* File none SeparateBeadFromPort.aeeeeeeeeeeeeeeeeeeeeeeee*e
tee Purpose This ReadFrom.Port method was separate fron main *

see Port package to implement rethod selection sell ate
see run-time. This reduces recompilation. Ce5eeee*eee
CeeeeCeCCCCeeeeee*e**eee~e*CCeeeeee**eeeeeee.*seeeeeeeeeeeeeeeeeeeee

with UnmanagedRS232_-Port;

B-4

separate (Port)
procedure Bead..FroaPort

(03 in ceisson..bject.object;
Buffer is out string;
aumkcharosto~re& in integer;
coast out Integer) is

begis
if pert.part..ofWE2 -i the&

self.Sead.Frok, ON ~Aft,?ffor.umsm.chsrs..to. read. count);

Uinanagod..38i 'ott .koa&Fron-Port
(03, uffer, mm~ckrs~to.resd count);

-- CLASS: VUmasagod U3232 Port
PURPOSK: This allows the user to access an R38232 port. This does no

-- checking of current port usage.

lisnITED FROW: Port
-- FILINAPK: aIS232port-o.a
UgyOos: Create-of. part..of, Comon.-VioU.of, Unmanaged-.3S232..Port..view,

-- foad.Frea.Port
-- Writ*-Ye-Port

OpeanPert
* CleosePort

-- Flesh-Queue - clears the queuen for the port

D93101S DECISIOUS: Different types of ports were crested to give the user
-- a rango of differest typos of ports sand use them all in the sane way.

sitI port; use port;
with system;
with language; use language;
with tty;
with os tiles;
sith cemmaoebject;
with uncheched..comversioa;

pachsge Ummonaged..U232.Port to

type variable;
type state is access variable;

type variable is record
pert~r 7 e-files.file-doecriptor; -- port file descriptor number
port..typs pert.pert..comm..type; -- terminal, modem or flow control
pert-mamber :port. port -numbers; -- port amber of device (minus 1)
tty-tye tty.tersie; F- ort settings
"erteode port.port-imput..mod; -- port mode
port spe*d integer;
*ffspriagneo natural :a 0;
heir Cesmeaobject.#bjoct;

ond record;

--- This function is as imistantiation of the generic
-- function UMWUCU.COUVKUSIOU c.envertiag the typo Ceamm-n.Object

--to access values of type.
function cmossoaview..f Is Rog

uncheched-cosversiea (source w)o state.
target 63o coemon~object.objec~t);

--- This function is an instantiation of the generic
--- function USCUECKED..CONVERSION converting access values of type
--- portastate to the type Coinon..Object.
functi£03 Unnanaged..13232..Port.view..of is new

unchocked..conversion (source -> coinon..object object,
target => state);

--- It performs the inverse UICHECRED..CONVERSION to the CREATE
--- function, 'liven a reference of type Comon..Object.Object,
--- it returns a reference of the access type defined its package.
function part-.of (OS in comon..object.object) return state;

--- The purpose of this function is linking the two nodes toget)'
---transparently. It onc0le the heir field of the first node to
--- point to a record of the other node, and make them reference
--of type Coinon..Object.Object.

function create-.of(
port..num in port .port..numbera;

speed in port.port-speed..spec;
mode in port .port..input..mode;
port..c..type in port .port..com..type;

offspring-.no :in natural :- 0)

return comon..object object;

--- The purpose of function is to open the system ports.
--- It performs roaseting the variables in the teruio structure to represent
--the way in which you wish the port to behave through C++ routine called

--- 'Ic.port..open".
function Open-.Port (OS i.L coinon..object.object) return boolean;
proceduro c..port..open(port-o..nm in syatom.address;

ttyport in syatem.address;
port-.speed in syatem.address;

>1 . P.mode in system.address);

--- The purpose of function is to close the system ports.
function Close-.Port (03 in comon..object. object) return boolean;

--- The purpose of function is clear the queue for the port.
procedure Flush-.Queue (COB in comon..object.object)

--- The purpose of function is delete the object.
procedure Otlete..Usmanaged..1S232..Port (0OS in common..object. object)

--- The purpose of function is read a data available on tI'e system port.
procedure ftead..From..Port(O3 in comon..object.object;

Buffer in out string;
a..-chars..to..read in integer;
count out integer);

--- The purpose of function is set a specific port mode.
procedure Vrite..To..Port(OR in comom..object.object;

buffer in out character;
Smm.chars-to..write in integer);

pragma 13?KXACK(C, c..port.open);
Pragua IDTIRPACI..IANZ(c..port..open, C..SUBP..PIRtIX & 'c..port-open");

end Upmanaged..3S232-Part;

with tezt..io; was tezt..io;
with Sty;

B-6

with oa-f ii.; use oa..files;
with unsigned-types; use unsigned..typea;
with jocti;
with Unix;
package body Unnanaged-IS232-Port is

package INT-10 is now intager..io(intager);
usaw IUT..I0;
package port..FD..I is new integer..io(os-files.file..descriptor);
saw port..FD..IO;
package port..aumbtrs-io is new enuueration..io(port .port..numbers);
us. port..numbera..io;
package port-.com..typ...io is now enumeration..io(port port-.cain.type);
use port..com~type..io;
package port - nput-..od*- io is new enu-*rat ionio (port. port-..input..mode)
use port-.input..fode-io;

-- METHOD: Part-.of
-- PUR.POSE: Given OB, it returns a reference of the access type defined

-- its package

function part-.of (OB in common..object.object) return state is
begin

return tinmanaged-1S232..Port..view-.of (port .psrt-of (09).heir);
end;

-- METHOD: Croats-of
-- PURPOSE: This sets up the port according to the user's specifications.

function create-of
port..aum :in port .port..nmbors;

speed :in port .port..spoed..pec;
mode :in port.port-input.mode;
port.;c-.type :in port .port-.com...type;

offspring-.no : in natural :* 0)
return common..object.object is

coo.obJect common..object. object;
rs232port :Unnanagod_1S232..Port state;
begin

rs232port :a new Uwaanaged..3S232..Port variable;
rs232port offspring..no :a u1ffpring..no;
rs232port.heir := null;
zs232port. port.-mods mode;
rs232port.port-.type :*port..c..type;

-- set port number to one loes than actual in order to miake array acceszi
-- easier. Set port type for hardware handshaking that must be done

rm232port.port..numbcr :0 port-.nun;
-- Load thý spead variable according to the user's request and using
-- the symbolic constants fouiud in teruio.h. Be advised that the
-- dip switches on the bottom of the device must be set for the speed you
-- want since this can't be mot by the computer. This merely sets how fast
-- the RS23~ PORT will receive stuff.

came speed~is
when port .b192O0 a>

.. re239*ort.port..spoed :a integer(tty.319200);

rs232j*rt port-speed :a integer(tty.B9600);
when port.b12.30 u>

rs232prt .port-..peed :a integer(tty .31200);
when port. "~0 a>

rs232p rt.port..apeed ;a integer(tty.L300);
ead case; t
com..object :- port.create(1);
port .part-.of~ccm..object).heir :- comon..view..of~rs232port);
port .part..of~cc...object) .port..open :FALSE;

B-7

return con-object;
end Create..of;

M- ETHOD: Open-.Part
-- PURPOSE: Given the settings created when the object was instantiated, this

-- does the UNIX calls to set up and open the RS232 port.

function Open-.Port (GB :in common..object.object) return boolean is
port..FD..nvm integer;
ttyport strlng(1. .11);
P..mode integer;
T :boolean :- True;
begin --- main open-.port

if not Port.get..Port..Open(OB) then
ttyport(l. .8) := 1"Idevltty";
if part-.of(OB) .port..type - port terminal then -- port type is terminal

ttyport(9) :- V
text..io.put..linsC'ttyport(9) - ")

elsif part..of(GB).port..type - port .modem then -- port type is modem
ttyport(9) :- Wa;
tezt..io.put..lineV~ttyport(9) - m");

elsif part..ofCOB).port..type - flow..control then -- port type is flow control
ttyport(9) : IfV;
textjio.put..linte(Ittyport(9) -*

end if;
ttyport(1O) :*character'val(port .port..numbers'pos

(part..of(GB).port..number) + I + character'pos('O'));
ttyport(i1) :* scii.nul;
--Call the C program that calls the system calls;
Pinode :- port .port-input..mode'pos(part..of COB) .port-mode);
c..port-.open(port-FD..num'address,ttyport 'address,

part.of (GB) .port-.speed'address,P..mode 'address);
part.of (GB) .port-FD :-

os-files .file..descriptor' (os..files .file-descriptor(port..FD..nun));
if port..FD..uum /- -1 then

port .part..of(OB) .port-.open :- TRUE;
end if;

end if;
return port.Get..Port..Open(OB);

end Open-Port;

- NETH OD: Close-Port
-- PURPOSE: Closes the port (if it was open) and releases the UNIX fd.

function Close..Port (GB : in coamon..object.object) return boolean is
begin

if port .Get..Port-Open(GB) then
port .part.of (GB) .port..open :- FALSE;
os..files.close(part.of (OB) .port..FD);

end if;
return port .Get..Port..Opoi(OB);

'end Close-.Port;

METHOD Flash-.Queue

pr cedur Flush-.Queue (GB : in comon..object.object) is

reul : inteager :- 0;
~gin

if ioctl.ioctl(part-.of(OB) .part-.FD,
ioctl.TCFLSE,result'address) - -1 then

tert..io.put-.lin ("fail to flush the buffer");
end if;

end Flush-.Queue;

B-8

METHD: Delet..UUannaged.3S2232.ort

--PURPOSE:Deeeojc

procedure Delad.Frou.Paort(OB 2Por :O in com oin-obn..object)obict

countsau : out ntegr) i

begin

closenttu :- unixreadPart..(OB) .at.D

ead Iead..Fro...PodRt; 2Pot

M- ETHOD: proeduFre VPritej.P
-- PURPOSE:

procedure VRiead.Tom-Port(OB :in comon..object.object;
Buffer :in out characte;
nuaý..chars~towriead in integer);i

begin

countilsurit~epadzt..of(OD) .port-FD,
buVraddreso, nun-chsrs-.to..riea);

end Vrite...to.Port;

METHd D proaedures232. ToPort;

PURPOSE:

procdureVrie-ToPar(OB n cmon-bjet~obec-

Bibliography

1. Ada 9X Project Report (DRAFT): Ada 9X Mapping Document Volume I Mapping Ra-
tionale, MA: Intermetrics, Inc. 1992.

2. Ann L. Winblad et al., Object-Oriented Software. New York: Addison-Wesley, 1990.

3. AT&T C++ Language System Release 2.0 Product Reference Manual, AT&T, 1989.

4. AT&T C++ Language System Release 2.0 Selected Reading, AT&T, 1989.

5. Atkinson, Colin. Object-Oriented Reuse, Concurrency and Distribution: An Ada Based
Approach. New York, NY: ACM Press, 1991.

6. Ada and C++ Business Case Analysis. Deputy Assistant Secretary of the Air Force
(Communications, Computers, and Logistics) Washington D.C 20330-1000, July 1991

7. Booch, Grady. Object-Oriented Design With Applications. Redwood City CA: The Ben-
jamin/Cummings Publishing Company, Inc., 1991..

8. Booch, Grady. Software Engineering with Ada (Second Edition). Redwood City CA:
The Benjamin/Cummings Publishing Company, Inc., 1986.

9. Cardelli, L. and P. Wegner On Understanding Types, Data Abstraction, and Polymor-
phism. ACM Computing Surveys, 17:471-522 (December 1985).

10. Coad, Peter and Edward Yourdon. Object-Oriented Analysis (Second Edition). Engle-
wood Cliffs NJ: Yourdon Press, 1991.

11. Cohen, Norman H. Ada as a Second Language. New York: McGraw-Hill, 1986.

12. CONVEX Interlanguage Programming Guide. Richardson TX: CONVEX Press, 1992.

13. Cox, B. Object-oriented Programming: An Evolutionary Approach. New York: Addison-
Wesley, 1986.

14. Developing And Using Ada Parts Real-Time Embedded Applications. McDonnel Douglas
Missile Systems Company, 1990.

15. Filer, Capt Robert E. A 3-D Virtual Environment Display System. MS Thesis.
AFIT/GCS/ENG/89D-2. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989.

16. Goodenough, J. B. Ross, D. T. and C. A. Irvine Software Engineering: Process, Prin-
ciples, and Goals. IEEE Computer, 8:17-27 (May 1975).

17. Henderson-Sellers, B. and J.M. Edwards The object-oriented systems life cycle. Com-
munications of the ACM, 33:142-149 (September 1990).

18. Hooper, James W. and Rowena 0. Chester Software Reuse: Guidelines and Methods.
New York, NY. Plenum Press, 1991.

19. Horowitz, Ellis and J. B. Munson. An Expansive View of Reusable Software. IEEE
Transactions on Software Engineering, SE-10: 488-493 (September 1984).

BIB-i

j--

• - : - :-- • - - •1ii ... --- • --';:

20. Khoshafian, Setrag and Razmik Abnous. Object Oriertation: Concepts, Languages,
User Interfaces. New York: John Wiley & Sons, Inc. 1990.

21. Korson, Tim and John D. McGregor. Understanding object-oriented: a unifying
paradigm. Communications of the ACM, 33:41-60 (September 1990).

22. Krueger, Charles W. Software Reuse. ACM Computing Surveys, 24:131-183 (June 1992).

23. Lippman, Stanley B. C++ Primer (Second Edition). New York: Addison-Wesley, 1991.

24. Meyer, B. Object-Oriented Software Construction. London, U.K.: Prentice-Hall Inter-
national, 1988.

25. Meyer, B. Reusability: The case for Object-Oriented Design. IEEE Software, 4:50-64
(March 1987).

26. Olson, Capt Robert A. Techniques To Enhance the Visual Realism of a Synthetic Envi-
ronment Flight Simulator. MS Thesis. AFIT/GCS/ENG/91D-16. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1991.

27. Phillips, Dwayne. OOP: now its hot. (object-oriented programming) (Tech Section) (Tu-
torial). Computer Shopper, 11:734-735 (Nov 1991).

28. Piper, Joanne DoD Software Reuse Vision and Strategy. CrossTalk: The Journal of
Defense Software Engineering, 37:2-8 (October 1992).

29. Pressman, Roger S. Software Engineering, A Practitioner's Approach. New York:
McGraw-Hill Book Company, 1987.

30. Richard Wiener and Richard Sincovec. Software Engineering with Modula-2 and Ada.
New York: John Wiley & Sons, Inc. 1984.

31. Riehle, Richard. Object lessons: what we mean when we talk about software engineering.
(Objectively Speaking). HP Professional, 5:76-78 (November 1991).

32. Rumbaugh, James and others. Object-Oriented Modeling and Design. Englewood Cliffs,
NJ: Prentice Hall, 1991.

33. Schonberg, Edmond Contrasts: Ada 9X and C++. CrossTalk: The Journal of Defense
Software Engineering, 36:12-16 (September 1992). -_

34. Scott, McCoy L. Binding and Ada. Ada Letters, 8:156-160 (November/December 1990).

35. Shlaer, Sally and Stephen J. Mellor. Object-Oriented Systems Analysis: Modeling the
World Data. NJ: Yourdon Press, 1988.

36. Silicon Graphics, Incorporated. Graphics Library Programming Guide. version 4.0
Mountain View, CA, 1990.

37. Simpson, Dennis Joseph. An Application of the Object-Oriented Paradigm to a Flight
Simulator. MS Thesis. AFIT/GCS/ENG/91D-22. School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH, December 1991.

38. Stroustrup, B. What is Object-Oriented Programming? IEEE Software, 10-20 (May
1988).

BIB-2

39. Taft, Tucker S. Multiple Inheritance in Ada 9X CrossTalk: The Journal of Defense
Software Engineering, 38:11-13 (November 1992).

40. Taylor, David. Managing the Transition to Object-Oriented Technology ACM SIGPLAN
Notices: OOPSLA 1991 Proceedings 26:357-358 (Nonember 1991).

41. Verdix Ada Development System. Silicon Graphics Computer Systems version 6.1.0,
1991.

42. Wallace, Robert H. Practitioner's Guide to Ada. New York: McGraw-Hill Book Com-
pany, 1986.

BIB-3

Vita

Captain Samkyu-Lim was born on November 23, 1962, in Junnam, Korea. He gradu-

ated from Marianist High School in Mokpo, in 1982. He entered the Air Force Academy in
Seoul, in 1982, where he received Bachelor of Science degree in Aeronautical Engineering.

Upon graduation he was assigned as a second lieutenant of the Air Force. In 1986, he com-

pleted the Elementary Computer Course which was offered by Education Command for the

officers who are assigned as computer engineers. Also, in 1987, he completed the Software

Development Education Course which was offered by Korean Institute of Defense Analysis

for the computer engineers of government. In 1988, he was assigned to the Headquarter of

the Air Force where he served as a software engineer. He entered the School of Engineering,

Air Force Institute of Technology of United States, in June, 1991.

Permanent address: 536 Bongho-Ri Dopo-Myen
Youngam-Gun Junnam
South Korea

VITA-1

I•: , .' .' "- " - "- -. . . • -" . ---- " ' . • .] - • - /% /

• -r '---. : . .. ,• • "•: _ _ ._'. l• -_ I..... . ' .. :- . . .:-_-...-.... .---. .. ,.. ,."-. .-.. . . .". .-.. . .,-.•.,. .. ,..-.

REPORT D'U ' TATICN PCj: . , .

ý1 . A 6F N C Y U 11E O N Li Y 7,'J • ,,• • 2 P L , ., . ? H i (., : T T '! - ', , , . '.' :_j -

March 1Mter's Thesis

Toward Reusable Graphics Components in Ada

Samkyu Lim

Air Force Institute of Te!.rsolgy, WPAFB OH 45433-6583 .LOT NUM3V~
AFIT/GCS/ENG/93M-03

9. SPONsH&ý (; Rtii 'ri ";aa r ?IL S.~ fcs)N

Software Technology for Adaptable Reliable Systems (STARS)
Suite 400
801 North l4andolph Street
Arlington, VA 22203

11. SUPPt. Mc N TAFW NQT•5~

12a.)!S1 8UTiGN AVALOL. LiTl -;TATiV' FN 12b. OISTiBUr;U .,N LODE

Distribution Unlimited

13. ABSTRACT (Mi~?mu•, 2 " . -,',:)
This thesis demonstrates and illustrates a way of developing reusable graphics software components in Ada asso-
ciated with a C++/C library. The work was carried out using object-oriented software development techniques
that were used to analyze, design and implement a partial flight simulator. The objective of this thesis was to
present a way of building reusable software components with Ada in a graphics application environment.
An object-oriented approach was taken in the development of a set of reusable graphics software components
for a flight simulator domain. A selection of a set of reusable software components came from domain analysis.
These components were analyzed in detail, then redesigned to demonstrate and illustrate the thesis objective.
Examples from design and implementation demonstrate how Ada 83 was applied in building reusable graphics
software components associated with C++ routines, the limitations of Ada 83, and how Ada9X addresses these
limitations.

14. SJBJECT TERMS l1" Nj",3I .2 O. "AC,5

Interface, Ada, C++, Reusability,Graphics 117

17. SECURITY CLASSIFICATION 18. Sk"URI1Y CLASSWF'CATiON 19. $Fcuk;uTY CLA'ISIF'7A7 iON .)0 LIMITAI C.• 0 A B rP.A
S OF REPORTI OF THIS PACE OF A•BTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-W-280-5500

,'.. ,., . .- .__ * --:. -;

.:. : , ". .. -- • .- " . N ,' f • - . . . ':: - ',- ." - .- - .

